Radiographics : a review publication of the Radiological Society of North America, Inc
-
Review
Transthoracic Echocardiography: Pitfalls and Limitations as Delineated at Cardiac CT and MR Imaging.
Transthoracic echocardiography ( TTE transthoracic echocardiography ) is a critical tool in the field of clinical cardiology. It often serves as one of the first-line imaging modalities in the evaluation of cardiac disease owing to its low cost, portability, widespread availability, lack of ionizing radiation, and ability to evaluate both anatomy and function of the heart. Consequently, a large majority of patients undergoing a cardiac computed tomography (CT) or magnetic resonance (MR) imaging examination will have a TTE transthoracic echocardiography available for review. ⋯ Common pitfalls and limitations of TTE transthoracic echocardiography will be highlighted using cardiac CT and MR imaging as the problem-solving modality. In this article, we have categorized the relevant pitfalls and limitations of TTE transthoracic echocardiography into four broad categories: (a) masses and mass mimics (crista terminalis, eustachian valve, right ventricle moderator band, atrioventricular groove fat, left ventricular band [or left ventricular false tendon], hiatal hernia, caseous calcification of the mitral annulus, lipomatous hypertrophy of the interatrial septum, cardiac tumors), (b) poorly visualized apical lesions (aneurysm, thrombus, infarct, and hypertrophic and other nonischemic cardiomyopathies), (c) evaluation for ascending thoracic aortic dissections (false positive, false negative, dissecting aneurysms), and (d) pericardial disease (acute and chronic/constrictive pericarditis, pericardial tamponade, pericardial cysts and diverticula, congenital absence of the pericardium). Online supplemental material is available for this article. ©RSNA, 2017.
-
Advances in imaging and the development of injection techniques have enabled spinal intervention to become an important tool in managing chronic spinal pain. Epidural steroid injection (ESI) is one of the most widely used spinal interventions; it directly delivers drugs into the epidural space to relieve pain originating from degenerative spine disorders-central canal stenoses and neural foraminal stenoses-or disk herniations. Knowledge of the normal anatomy of the epidural space is essential to perform an effective and safe ESI and to recognize possible complications. ⋯ Familiarity with the findings on a typical "true" epidurogram (demonstrating correct needle placement in the epidural space) permits proper performance of ESI. Findings on "false" epidurograms (demonstrating incorrect needle placement) include muscular staining and evidence of intravascular injection, inadvertent facet joint injection, dural puncture, subdural injection, and intraneural or intradiscal injection. ©RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on December 22, 2016.
-
Dual-energy computed tomography (CT) is a powerful diagnostic tool that is becoming more widely clinically available. Dual-energy CT has the potential to aid in the detection or add diagnostic confidence in the evaluation of a variety of emergent neurologic conditions with use of postprocessing techniques that allow one to take advantage of the different x-ray energy-dependent absorption behaviors of different materials. Differentiating iodine from hemorrhage may help in delineating CT angiographic spot signs, which are small foci of intracranial hemorrhage seen on CT angiograms in cases of acute hemorrhage. ⋯ Bone subtraction may also be helpful for improving the conspicuity of small extra-axial fluid collections and extra-axial masses. Material characterization can be helpful for clarifying whether small foci of intermediate attenuation represent hemorrhage, calcification, or a foreign material, and it may also be useful for quantifying the amount of hemorrhage or iodine in preexisting or incidentally detected lesions. Virtual monochromatic imaging also can be used to problem solve in challenging cases. (©)RSNA, 2016.
-
Optimal treatment of thyroid cancer is highly dependent on accurate staging of the extent of disease at presentation. Preoperative ultrasonography (US) is the most sensitive method for detecting metastatic lymph nodes and is recommended as part of the standard preoperative workup. Missed findings on preoperative scans may lead to understaging and inadequate surgical management, which subsequently predispose these patients to residual disease postoperatively and a higher risk for recurrence, possibly requiring repeat surgery. ⋯ This review highlights the importance of accurate preoperative US for patients with differentiated thyroid cancer, with specific attention to deficiencies that exist in general radiology department thyroid US reports. We present a standardized approach to neck US reporting that incorporates the newly updated 2015 recommendations from the American Thyroid Association and also addresses the pertinent questions for thyroid surgeons. By ensuring comprehensive preoperative assessment and improving thyroid US reporting, we seek to improve patient access to optimized care. ©RSNA, 2016.
-
Cranial nerve disorders are uncommon disease conditions encountered in pediatric patients, and can be categorized as congenital, inflammatory, traumatic, or tumorous conditions that involve the cranial nerve itself or propagation of the disorder from adjacent organs. However, determination of the normal course, as well as abnormalities, of cranial nerves in pediatric patients is challenging because of the small caliber of the cranial nerve, as well as the small intracranial and skull base structures. With the help of recently developed magnetic resonance (MR) imaging techniques that provide higher spatial resolution and fast imaging techniques including three-dimensional MR images with or without the use of gadolinium contrast agent, radiologists can more easily diagnose disease conditions that involve the small cranial nerves, such as the oculomotor, abducens, facial, and hypoglossal nerves, as well as normal radiologic anatomy, even in very young children. ⋯ Therefore, radiologists should be familiar not only with the various diseases that cause cranial nerve dysfunction, and the entire course of each cranial nerve including the intra-axial nuclei and fibers, but also the technical considerations for optimal imaging of pediatric cranial nerves. In this article, we briefly review normal cranial nerve anatomy and imaging findings of various pediatric cranial nerve dysfunctions, as well as the technical considerations of pediatric cranial nerve imaging. Online supplemental material is available for this article. (©)RSNA, 2016.