Hepatology : official journal of the American Association for the Study of Liver Diseases
-
Hepcidin is a central regulator of iron homeostasis. HFE and transferrin receptor 2 (TFR2) are mutated in adult-onset forms of hereditary hemochromatosis and regulate the expression of hepcidin in response to iron. Whether they act through the same or parallel pathways is unclear. To investigate this, we generated a mouse model with deletion of both Hfe and Tfr2 genes by crossing Hfe and Tfr2 null mice on a genetically identical background. Tissue and serum from wildtype, single-, and double-null mice were analyzed. Serum transferrin saturation and hepatic iron concentrations were determined. The expression of iron-related messenger RNA (mRNA) transcripts was analyzed by real-time polymerase chain reaction (PCR). Levels of the iron-related proteins Tfr1, Tfr2, ferritin, and prohepcidin, and the phosphorylation status of the cell signaling proteins extracellular signal-regulated kinase 1/2 (Erk1/2) and Smad1/5/8, were analyzed by immunoblotting. Double-null mice had more severe iron loading than mice lacking either Hfe or Tfr2; Tfr2 null mice had a greater iron burden than Hfe-null mice. Hepcidin expression relative to iron stores was reduced in the Hfe-null mice, with significantly lower values in the Tfr2-null mice. In the absence of both Hfe and Tfr2, hepcidin expression was reduced even further. A significant decrease in phospho-Erk1/2 in the livers of null mice and a reduction in phospho-Smad1/5/8 suggest that both the mitogen-activated protein kinase (MAPK) and bone morphogenetic protein / mothers against decapentaplegic homolog (BMP/SMAD) signaling pathways may be involved in Hfe- and Tfr2-mediated regulation of hepcidin. ⋯ These studies demonstrate that iron overload due to deletion of Tfr2 is more severe than that due to Hfe, and that loss of both molecules results in pronounced iron overload. Analysis of Hfe/Tfr2 double-null mice suggests that Hfe and Tfr2 regulate hepcidin through parallel pathways involving Erk1/2 and Smad1/5/8.
-
Randomized Controlled Trial
Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis.
Pioglitazone treatment improves insulin resistance (IR), glucose metabolism, hepatic steatosis, and necroinflammation in patients with nonalcoholic steatohepatitis (NASH). Because abnormal lipid metabolism/elevated plasma free fatty acids (FFAs) are important to the pathophysiology of NASH, we examined the impact of pioglitazone therapy on adipose tissue insulin resistance (Adipo-IR) during the treatment of patients with NASH. To this end, we assessed glucose/lipid metabolism in 47 patients with impaired glucose tolerance/type 2 diabetes mellitus and NASH and 20 nondiabetic controls. All individuals underwent a 75-g oral glucose tolerance test (OGTT) in which we measured glucose tolerance, IR, and suppression of plasma FFAs. We also measured Adipo-IR index (fasting, FFAs x insulin), hepatic fat by magnetic resonance spectroscopy, and liver histology (liver biopsy). Patients were randomized (double-blind) to diet plus pioglitazone (45 mg/day) or placebo for 6 months, and all measurements were repeated. We found that patients with NASH had severe Adipo-IR and low adiponectin levels. Fasting FFAs were increased and their suppression during the OGTT was impaired. Adipo-IR was strongly associated with hepatic fat (r= 0.54) and reduced glucose clearance both fasting (r=0.34) and during the OGTT (r=0.40, all P <0.002). Pioglitazone significantly improved glucose tolerance and glucose clearance, steatosis and necroinflammation (all P<0.01-0.001 versus placebo). Fasting/postprandial plasma FFAs decreased to levels of controls with pioglitazone (P<0.02 versus placebo). Adipo-IR decreased by 47% and correlated with the reduction of hepatic fat (r=0.46, P=0.009) and with the reduction in hepatic necroinflammation (r=0.47, P=0.0007). ⋯ Patients with NASH have severe Adipo-IR independent of the degree of obesity. Amelioration of Adipo-IR by pioglitazone is closely related to histological improvement and plays an important role during treatment of patients with NASH.