Hepatology : official journal of the American Association for the Study of Liver Diseases
-
Portal vein embolization has been used recently to decrease the amount of the liver to be resected and to enhance the function of the remaining hypertrophied lobes. We have observed a strong contact destructivity of absolute ethanol and used it for portal vein embolization. The present study was performed to produce hepatic hypertrophy and to show histopathologic changes that follow ethanol embolization of rat liver. ⋯ Because the mortality rate in the low-dose group was lower than in the high-dose group and extensive necrosis of the liver parenchyma and subsequent regeneration was sufficient, using minimum dose of ethanol was much safer. Based on the biochemical and hematologic parameters, portal vein embolization with low-dose ethanol did not impair liver function more than hepatectomy alone during the initial 14 days. Portal vein embolization with absolute ethanol makes more extensive hepatectomy possible by reducing the volume necessary to resect and preserves the function of the remaining liver.
-
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that causes massive centrilobular hepatic necrosis at high doses, leading to death. The objectives of this study were to test our working hypothesis that preplaced cell division and hepatic tissue repair by prior thioacetamide (TA) administration provides protection against APAP-induced lethality and to investigate the underlying mechanism. Male Sprague-Dawley rats were treated with a low dose of TA (50 mg/kg, intraperitoneally [i.p.]) before challenge with a 90% lethal dose (1,800 mg/kg, i.p.) of APAP. ⋯ Moreover, hepatic glutathione was decreased to a similar extent regardless of TA pretreatment, suggesting that decreased bioactivation of APAP is unlikely to be the mechanism underlying TA protection. [3H]Thymidine incorporation studies confirmed the expected stimulation of S-phase synthesis, and proliferating cell nuclear antigen studies showed a corresponding stimulation of cell division through accelerated cell cycle progression. Intervention with TA-induced cell division by colchicine antimitosis ended the TA protection in the absence of significant changes in the time course of serum enzyme elevations during the inflictive phase of APAP hepatotoxicity. These studies suggest that hepatocyte division and tissue repair induced by TA facilitate sustained hepatic tissue repair after subsequent APAP-induced liver injury, producing recovery from liver injury and protection against APAP lethality.
-
We studied the pattern of intermixing of the hepatic arterial and portal venous flows in a perfused rat liver preparation under constant flow (12 ml/min) with intravital epifluorescent microscopy; changes in the steady state extraction ratio of carbon 14-labeled phenacetin and tritiated acetaminophen, probes metabolized primarily in perivenous and periportal regions of the rat liver, respectively; and the spaces accessed by noneliminated reference indicators introduced as a bolus into the hepatic artery and portal vein at different hepatic arterial/portal venous flow regimens of 0:12, 2:10 and 4:8. The sinusoidal velocities for the hepatic arterial- and portal venous (hepatic arterial/portal venous flow at 4:8)-infused fluorescein isothiocyanate-erythrocytes (100 microliters/min) were 327 +/- 78 and 301 +/- 63 microns/sec, respectively, and the velocity for the solely portal venous-perfused liver (12 ml/min) was 347 +/- 74 microns/sec; the flow-weighted sinusoidal velocity was highly correlated to the sinusoidal volume for the dually perfused rat liver. Small but significant decreases in the extraction ratio of [14C]phenacetin (from 0.989 to 0.984 and 0.980) and tritiated acetaminophen (from 0.631 to 0.607 to 0.563), delivered simultaneously into the hepatic artery and portal vein, were observed with an increment of hepatic arterial flow within the same liver preparation; oxygen consumption rate also fell slightly, in parallel fashion. ⋯ However, slightly larger total water spaces were obtained with hepatic arterial injection. This excess water space was almost completely accounted for by the "nonsinusoidal" extravascular space associated with the peribiliary capillary plexus; it averaged 0.03 ml/gm and was independent of flow. The anomaly, a reduced flow-weighted sinusoidal velocity for the dually perfused liver, an unchanged diameter of the terminal hepatic venule (32 microns) among the hepatic arterial/portal venous flow ratios and the reduction in the extraction ratio of the drug probes and oxygen consumption rates suggest that some of the arterial flow must have entered the sinusoids somewhat downstream.