The Science of the total environment
-
Sci. Total Environ. · Jan 2021
ReviewUnlocking the surge in demand for personal and protective equipment (PPE) and improvised face coverings arising from coronavirus disease (COVID-19) pandemic - Implications for efficacy, re-use and sustainable waste management.
Currently, there is no effective vaccine for tackling the ongoing COVID-19 pandemic caused by SARS-CoV-2 with the occurrence of repeat waves of infection frequently stretching hospital resources beyond capacity. Disease countermeasures rely upon preventing person-to-person transmission of SARS-CoV2 so as to protect front-line healthcare workers (HCWs). COVID-19 brings enormous challenges in terms of sustaining the supply chain for single-use-plastic personal and protective equipment (PPE). ⋯ Use of 60 °C for 60 min (such as, use of domestic washing machine and spin dryer) has been advocated for face covering decontamination. Risk of virus infiltration in improvised face coverings is potentially increased by duration of wearing due to humidity, liquid diffusion and virus retention. Future sustained use of PPE will be influenced by the availability of recyclable PPE and by innovative biomedical waste management.
-
Sci. Total Environ. · Jan 2021
Sunlight ultraviolet radiation dose is negatively correlated with the percent positive of SARS-CoV-2 and four other common human coronaviruses in the U.S.
Human coronaviruses are RNA viruses that are sensitive to ultraviolet (UV) radiation. Sunlight contains UVA (320-400 nm), UVB (260-320 nm) and UVC (200-260 nm) action spectra. UVC can inactivate coronaviruses, including severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). ⋯ The weekly percent positive of SARS-CoV-2 during April 17, 2020 to July 10, 2020 showed a significant negative correlation with the sunlight UV radiation dose in census regions 1 and 2 of the U. S. while no statistical significance in the other regions. Additionally, sunlight UV radiation also showed some negative effects with respect to the early SARS-CoV-2 transmission.
-
Sci. Total Environ. · Jan 2021
Detection of SARS-CoV-2 in raw and treated wastewater in Germany - Suitability for COVID-19 surveillance and potential transmission risks.
Wastewater-based monitoring of the spread of the new SARS-CoV-2 virus, also referred to as wastewater-based epidemiology (WBE), has been suggested as a tool to support epidemiology. An extensive sampling campaign, including nine municipal wastewater treatment plants, has been conducted in different cities of the Federal State of North Rhine-Westphalia (Germany) on the same day in April 2020, close to the first peak of the corona crisis. Samples were processed and analysed for a set of SARS-CoV-2-specific genes, as well as pan-genotypic gene sequences also covering other coronavirus types, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). ⋯ The infectivity of the raw wastewater has also been assessed by viral outgrowth assay with a potential SARS-CoV-2 host cell line in vitro, which were not infected when exposed to the samples. This first evidence suggests that wastewater might be no major route for transmission to humans. Our findings draw attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.
-
Sci. Total Environ. · Jan 2021
ReviewViral, host and environmental factors that favor anthropozoonotic spillover of coronaviruses: An opinionated review, focusing on SARS-CoV, MERS-CoV and SARS-CoV-2.
Environmental factors play a key role in the zoonotic transmission of emerging pathogenic viruses as mankind is constantly disturbing wildlife's ecosystems usually by cutting down forests to build human settlements or by catching wild animals for food, which deprives the viruses of their natural hosts and gives them opportunity to infect humans. In December 2019, a new coronavirus emerged from bats and was named SARS-CoV-2 by the International Committee for Taxonomy of Viruses, and the disease it causes named COVID-19 by the World Health Organization. ⋯ This ability for host switching and interspecies infection is often attributed to the great diversity of these viruses, which is a result of viral and host factors such as the low fidelity of their RNA-dependent RNA polymerase, the high frequency of their homologous RNA recombination, and the adaptation of the S protein to bind host receptors like the angiotensin converting enzyme 2 (ACE2) in the case of SARS-CoV and SARS-CoV-2, and dipeptidyl peptidase 4 (DDP4) in MERS-CoV. This review presents an overview of the zoonotic transmission of SARS, MERS and COVID-19, focusing on the viral, host and environmental factors that favor the spillover of these viruses into humans, as well as the biological and ecological factors that make bats the perfect animal reservoir of infection for these viruses.
-
Sci. Total Environ. · Dec 2020
Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus.
On December 31, 2019, the novel human coronavirus (COVID-19) was identified in Wuhan, China and swiftly spread in all nations and territories around the globe. There is much debate about the major route of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmissions. So, more evidence is required to determine the potential pathway of transmission of SARS-CoV-2 including airborne transmission. ⋯ Accordingly, we found two positive air samples (in the ICU) out of 14 ones taken from different wards with confirmed COVID-19 patients. The results revealed the possibility of airborne transmission of SARS-CoV-2 though more studies are required to determine the role of actual mechanisms such as cough, sneeze, normal breathing and speaking in the emission of airborne size carrier aerosols. Likewise, more quantitative analyses are needed to estimate airborne viability of SARS-CoV-2 in the carrier aerosols.