Journal of neuro-oncology
-
Journal of neuro-oncology · May 2010
Randomized Controlled TrialConvection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1.
A major obstacle in glioblastoma (GBM) therapy is the restrictive nature of the blood-brain barrier (BBB). Convection-enhanced delivery (CED) is a novel method of drug administration which allows direct parenchymal infusion of therapeutics, bypassing the BBB. MR1-1 is a novel recombinant immunotoxin that targets the GBM tumor-specific antigen EGFRvIII and can be delivered via CED infusion. ⋯ There was no statistically significant difference in weight change over time among groups (P > 0.999). MR1-1 co-infused with Gd-DTPA via CED is safe in the long-term setting in a pre-clinical animal model. Our data supports the use of Gd-DTPA, as a surrogate tracer, co-infused with MR1-1 for drug distribution monitoring in patients with GBM.
-
Journal of neuro-oncology · May 2010
Case ReportsSeizure risk in brain tumor patients with conversion to generic levetiracetam.
Breakthrough seizure activity has been reported with conversion from brand name to generic anticonvulsants. This has prompted several organizations to support physician notification of generic substitution and patient consent. Recently, a generic formulation of levetiracetam has become available. ⋯ In three cases, the patients have remained seizure free with conversion back to Keppra. The final patient required an increased dose of levetiracetam. As has been described with generic substitution of other anticonvulsants, patients switched to generic levetiracetam may be at risk for breakthrough seizure activity.
-
Journal of neuro-oncology · May 2010
MK886-induced apoptosis depends on the 5-LO expression level in human malignant glioma cells.
Mounting evidence suggests that lipoxygenase (LO)-catalyzed products may play a key role in the development and progression of human cancers. In this study, we analyzed the effects of a 5-LO inhibitor, which inhibits the conversion of arachidonic acid to leukotrienes, on cell proliferation and apoptosis in human malignant glioma cells, including 5-LO-expressing cells U-87MG, A172 and 5-LO non-expressing cell U373. Growth of U-87MG and A172 cells, but not that of U373 cells, was inhibited in a dose-dependent manner by treatment with MK886. ⋯ Moreover, this treatment reduced ERKs phosphorylation and anti-apoptotic molecule Bcl-2 expression, and increased Bax expression in U-87MG and A172 cells. In summary, our results show there is a link between the 5-LO expression status and the extent of MK886-inhibited cell proliferation and apoptosis. Taken together, this study suggest that 5-LO is a possible target for treating patients with gliomas, and 5-LO inhibition might be potent therapy for patients with 5-LO-expressing malignant gliomas.
-
Journal of neuro-oncology · May 2010
Can permeability measurements add to blood volume measurements in differentiating tumefactive demyelinating lesions from high grade gliomas using perfusion CT?
Tumefactive demyelinating lesions (TDLs) can mimic a neoplasm on conventional imaging and may necessitate biopsy for diagnosis. The purpose of this study was to differentiate TDLs from high grade gliomas based on physiologic (permeability) and hemodynamic (blood volume) parameters using perfusion CT. ⋯ TDLs showed lower permeability surface area product (PS) (0.8 +/- 0.2 vs 2.4 +/- 1.4 ml/100 g/min, P-value 0.014) and lower cerebral blood volume (CBV) (1.0 +/- 0.2 vs 2.8 +/- 1.2 ml/100 g, P-value 0.006) as compared to high grade gliomas. TDLs show lower PS and CBV as compared to high grade gliomas, to which they can mimic on conventional MR imaging, due to lack of neoangiogenesis and vascular endothelial proliferation and hence perfusion CT can be used to differentiate the two entities.
-
Journal of neuro-oncology · May 2010
Imatinib mesylate (Glivec) inhibits Schwann cell viability and reduces the size of human plexiform neurofibroma in a xenograft model.
Plexiform neurofibromas (PNF), one of the major features of neurofibromatosis type 1 (NF1), are characterized by complex cellular composition and mostly slow but variable growth patterns. In this study, we examined the effect of imatinib mesylate, a receptor tyrosine kinase inhibitor, on PNF-derived Schwann cells and PNF tumour growth in vitro and in vivo. In vitro, PNF-derived primary Schwann cells express platelet-derived growth factors receptors (PDGFR) alpha and beta, both targets of imatinib, and cell viability was reduced by imatinib mesylate, with 50% inhibition concentration (IC(50)) of 10 microM. ⋯ Treatment with imatinib mesylate at a daily dose of 75 mg/kg for 4 weeks reduced the graft size by an average of 80% (n = 8), significantly different from the original sizes within the group and from sizes of the grafts in 11 untreated mice in the control group (P < 0.001). We demonstrated that grafting human PNF tumour fragments into nude mice provides an adequate in vivo model for drug testing. Our results provide in vivo and in vitro evidence for efficacy of imatinib mesylate for PNF.