Journal of pharmaceutical and biomedical analysis
-
J Pharm Biomed Anal · Dec 2012
Clinical TrialAnalysis of total and unbound hydromorphone in human plasma by ultrafiltration and LC-MS/MS: application to clinical trial in patients undergoing open heart surgery.
A method for a sensitive and specific analysis of hydromorphone total and unbound drug concentrations in human plasma was developed and validated. Sample preparation was preceded with an ultrafiltration step to separate the unbound drug from the protein bound fraction of hydromorphone. Both the ultrafiltrate and plasma samples were extracted with solid-phase extraction and substituted with stable isotope-labeled hydromorphone that was used as internal standard. ⋯ Intra- and interassay reproducibility and inaccuracy did not exceed 10%. Hydromorphone was on the average 14% bound to plasma proteins, supporting the previously published unreferenced statements that the protein binding of hydromorphone is low. Method was applied to a clinical trial in patients undergoing open heart surgery to generate a target controlled infusion model for the postoperative patient controlled analgesia with hydromorphone.
-
J Pharm Biomed Anal · Dec 2012
Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state.
The aim of this work was to investigate the potential synergistic effect of water-soluble polymers (hypromellose, HPMC and polyvinylpyrrolidone, PVP) on zaleplon (ZAL) complexation with parent β-cyclodextrin (βCD) and its randomly methylated derivative (RAMEB) in solution and in solid state. The addition of HPMC to the complexation medium improved ZAL complexation and solubilization with RAMEB (K(ZAL/RAMEB)=156±5M(-1) and K(ZAL/RAMEB/HPMC)=189±8M(-1); p<0.01), while such effect was not observed for βCD (K(ZAL/βCD)=112±2M(-1) and K(ZAL/βCD/HPMC)=119±8M(-1); p>0.05). Although PVP increased the ZAL aqueous solubility from 0.22 to 0.27mg/mL, it did not show any synergistic effects on ZAL solubilization with the cyclodextrins tested. ⋯ The in vitro dissolution rate followed the rank order ZAL/RAMEB/HPMC>ZAL/RAMEB=ZAL/βCD/HPMC>ZAL/βCD≫ZAL, clearly demonstrating the superior performance of RAMEB on ZAL complexation in the solid state and its synergistic effect with HPMC on drug solubility. Surprisingly, when loaded into tablets made with insoluble microcrystalline cellulose, RAMEB complexes had no positive effect on drug dissolution, because HPMC and RAMEB acted as a binders inside the tablets, prolonging their disintegration. Oppositely, the formulation with mannitol, a soluble excipient, containing a ternary RAMEB system, released the complete drug-dose in only 5min, clearly demonstrating its suitability for the development of immediate-release oral formulation of ZAL.
-
J Pharm Biomed Anal · Nov 2012
Simultaneous quantitative determination of bupropion and its three major metabolites in human umbilical cord plasma and placental tissue using high-performance liquid chromatography-tandem mass spectrometry.
A liquid chromatography in tandem with electro-spray ionization mass spectrometry method has been developed and validated for the quantitative determination of bupropion and its major metabolites (hydroxybupropion, threo- and erythrohydrobupropion) in human umbilical cord plasma and placental tissue. The samples were acidified with trichloroacetic acid, and protein precipitated by adding acetonitrile. Chromatographic separation of drug and metabolites was achieved by using a Waters Symmetry C(18) column, with an isocratic elution of 31% methanol and 69% formic acid (0.04%, v/v) aqueous solution at a flow rate of 1.0 mL/min. ⋯ The relative deviation of this method was <15% for intra- and inter-day assays, and the accuracy ranged between 88% and 105%. The extraction recovery of the four analytes ranged between 89% and 96% in umbilical cord plasma, and 64% and 80% in placental tissue. No significant matrix effect was observed in the presented method.
-
J Pharm Biomed Anal · Nov 2012
Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin of Radix scutellariae extract in rat plasma by liquid chromatography tandem mass spectrometry.
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin in rat plasma, using naringin as an internal standard. After acidifying with HCl, plasma samples were pretreated by liquid-liquid extraction with acetone. Chromatographic separation was accomplished on a Hypersil Gold-C(18) analytical column (2.1×150 mm, 5 μm) utilizing a gradient elution profile and a mobile phase consisting of (A) 0.1% formic acid in water and (B) acetonitrile. ⋯ The lower limit of quantification was 0.5 ng/ml for baicalin, wogonoside, wogonin and oroxylin A, and 1.0 ng/ml for baicalein and chrysin. Intra-day and inter-day precisions (RSD%) were less than 15% and accuracy (RE%) ranged from -6.7% to 5.8%. The validated method was successfully applied to investigate the pharmacokinetics of the major flavonoids of Radix scutellariae extract after oral administration to rats.
-
J Pharm Biomed Anal · Mar 2012
Comparative StudyIn vivo microdialysis with LC-MS for analysis of spinosin and its interaction with cyclosporin A in rat brain, blood and bile.
Spinosin, a major bioactive herbal ingredient isolated from Semen Ziziphi Spinosae, plays an important role in sedation and hypnosis. However, the pharmacokinetic behavior of spinosin in special sites has not been reported. Microdialysis (MD) technique, as a continuous, realtime monitoring sampling technique, is very suitable for the evaluation of the disposition of diverse drugs. ⋯ The t(1/2) values of spinosin in blood, bile and brain also changed from 48.07 to 95.04 min, from 97.20 to 152.21 and from 42.18 to 73.83 min, respectively. These results demonstrated that the CsA decreased the efflux of spinosin through the inhibition of P-glycoprotein (P-gp) efflux transporter and it might be used as a group of P-gp substrate. Other transporters or pathways may also be involved in the metabolism of spinosin.