Molecular pharmacology
-
Molecular pharmacology · Nov 2008
ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors.
Voltage-gated sodium (Na(V)1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to Na(V)1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding Na(V)1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make Na(V)1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires Na(V)1.7-selective channel blockers. ⋯ Mono-iodo-ProTx-II ((125)I-ProTx-II) binds with high affinity (K(d) = 0.3 nM) to recombinant hNa(V)1.7 channels. Binding of (125)I-ProTx-II is insensitive to the presence of other well characterized Na(V)1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the (125)I-ProTx-II binding assay, described here, offers a new tool in the search for novel Na(V)1.7-selective blockers.
-
Molecular pharmacology · Oct 2008
Access and binding of local anesthetics in the closed sodium channel.
Local anesthetics (LAs) are known to bind Na+ channels in the closed, open, and inactivated states and reach their binding sites via extracellular and intracellular access pathways. Despite intensive studies, no atomic-scale theory is available to explain the diverse experimental data on the LA actions. Here we attempt to contribute to this theory by simulating access and binding of LAs in the KcsA-based homology model of the closed Na+ channel. ⋯ Therefore, occupation of the selectivity-filter DEKA locus by a Na+ ion destabilizes the vertical mode, thus favoring the horizontal mode. LA binding in the closed channel requires the resident Na+ ion to leave the nucleophilic central cavity through the selectivity filter, whereas the LA egress should be coupled with reoccupation of the cavity by Na+. This hypothesis on the coupled movement of Na+ and LA in the closed channel explains seemingly contradictory data on how the outer-pore mutations as well as tetrodotoxin and micro-conotoxin binding affect the ingress and egress of LAs.
-
Molecular pharmacology · Oct 2008
Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein syntaxin 1A (SYN1A) interacts with and regulates the function of transmembrane proteins, including ion channels and neurotransmitter transporters. Here, we define the first 33 amino acids of the N terminus of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. ⋯ It has been shown recently that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by AMPH and regulates AMPH-induced DA efflux. Here, we show that AMPH-induced association between DAT and SYN1A requires CaMKII activity and that inhibition of CaMKII blocks the ability of exogenous SYN1A to promote DA efflux. These data suggest that AMPH activation of CaMKII supports DAT/SYN1A association, resulting in a mode of DAT capable of DA efflux.
-
Molecular pharmacology · Sep 2008
Alternative splicing of the Ca2+ channel beta4 subunit confers specificity for gabapentin inhibition of Cav2.1 trafficking.
Gabapentin is well established as an effective treatment for neuropathic pain; however, little is known about its mechanism of action. It binds with high affinity to Ca2+ channel alpha2delta subunits that are expressed in dorsal root ganglia. Mutation of a single alpha2delta amino acid, R217A, eliminates both gabapentin binding and analgesic efficacy. ⋯ Our principal findings are as follows: 1) gabapentin inhibits trafficking of recombinant Ca(v)2.1 Ca2+ channels in X. laevis oocytes; 2) gabapentin inhibition occurs in the presence of the Ca2+ channel beta4a subunit but not in the presence of beta4b; 3) gabapentin does not affect Ca(v)2.1 voltage-dependent gating parameters; 4) inhibition of Ca(v)2.1 trafficking is highly dependent on beta-subunit concentration; and 5) gabapentin inhibition of Ca(v)2.1 trafficking can be reversed by the alpha2delta R217A mutation. Overall, our results suggest that gabapentin reduces the number of beta4a-bound Ca(v)2.1 complexes that are successfully trafficked to the plasma membrane. This mechanism may help to explain why gabapentin is both effective and selective in the treatment of neuropathic pain states that involve up-regulation of alpha2delta subunits.
-
Molecular pharmacology · Jul 2008
alpha(v)beta(3) Integrin-mediated drug resistance in human laryngeal carcinoma cells is caused by glutathione-dependent elimination of drug-induced reactive oxidative species.
As a model for determination of the role of integrins in drug resistance, we used alpha(v)beta(3) integrin-negative human laryngeal carcinoma cell line (HEp2) and three HEp2-derived cell clones with a gradual increase of alpha(v)beta(3) integrin expression. The alpha(v)beta(3) integrin expression protects cells from cisplatin, mitomycin C, and doxorubicin. In HEp2-alpha(v)beta(3) integrin-expressing cells, the constitutive expression of Bcl-2 protein and the level of glutathione (GSH) were increased compared with HEp2 cells. ⋯ There was no difference in DNA platination between HEp2 and HEp2-alpha(v)beta(3) integrin-expressing cells, indicating that the mechanism of drug resistance is independent of cisplatin detoxification by GSH. A strong increase of reactive oxidative species (ROS) formation during cisplatin or doxorubicin treatment in HEp2 cells was reduced in HEp2-alpha(v)beta(3) integrin-expressing cells. Since this increased elimination of ROS could be reverted by GSH depletion, we concluded that multidrug resistance is the consequence of GSH-dependent increased ability of alpha(v)beta(3)-expressing cells to eliminate drug-induced ROS.