Molecular pharmacology
-
Molecular pharmacology · Feb 2018
Slowly Signaling G Protein-Biased CB2 Cannabinoid Receptor Agonist LY2828360 Suppresses Neuropathic Pain with Sustained Efficacy and Attenuates Morphine Tolerance and Dependence.
The CB2 cannabinoid agonist LY2828360 lacked both toxicity and efficacy in a clinical trial for osteoarthritis. Whether LY2828360 suppresses neuropathic pain has not been reported, and its signaling profile is unknown. In vitro, LY2828360 was a slowly acting but efficacious G protein-biased CB2 agonist, inhibiting cAMP accumulation and activating extracellular signal-regulated kinase 1/2 signaling while failing to recruit arrestin, activate inositol phosphate signaling, or internalize CB2 receptors. ⋯ WT mice that received LY2828360 coadministered with morphine exhibited a trend (P = 0.055) toward fewer naloxone-precipitated jumps compared with CB2KO mice. In conclusion, LY2828360 is a slowly signaling, G protein-biased CB2 agonist that attenuates chemotherapy-induced neuropathic pain without producing tolerance and may prolong effective opioid analgesia while reducing opioid dependence. LY2828360 may be useful as a first-line treatment in chemotherapy-induced neuropathic pain and may be highly efficacious in neuropathic pain states that are refractive to opioid analgesics.
-
Molecular pharmacology · Jun 2017
Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism.
The TWIK-related acid-sensitive potassium channel 3 (TASK-3; KCNK9) tandem pore potassium channel function is activated by halogenated anesthetics through binding at a putative anesthetic-binding cavity. To understand the pharmacologic requirements for TASK-3 activation, we studied the concentration-response of TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, halothane, α-chloralose, 2,2,2-trichloroethanol [TCE], and chloral hydrate), to ethanol, and to a panel of halogenated methanes and alcohols. We used mutagenesis to probe the anesthetic-binding cavity as observed in a TASK-3 homology model. ⋯ TASK-3 function is activated by a multiple agents and requires a halogenated substituent between ∼30 and 232 cm3/mol volume with potency increased by halogen polarizeability. Val-136 and adjacent residues may mediate anesthetic binding and stabilize an open state regulated by pore residue Leu-122. Isoflurane and TCE likely share commonalities in their mechanism of TASK-3 activation.
-
Molecular pharmacology · Sep 2016
ReviewDynamic Regulation of the GABAA Receptor Function by Redox Mechanisms.
Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions.
-
Molecular pharmacology · Mar 2016
Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents.
Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. ⋯ In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4.
-
Molecular pharmacology · Nov 2015
Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore.
Compounds PKTHPP (1-{1-[6-(biphenyl-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]-pyrimidin-4-yl]piperidin-4-yl}propan-1-one), A1899 (2''-[(4-methoxybenzoylamino)methyl]biphenyl-2-carboxylic acid 2,4-difluorobenzylamide), and doxapram inhibit TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore (K2P) potassium channel function and stimulate breathing. To better understand the molecular mechanism(s) of action of these drugs, we undertook studies to identify amino acid residues in the TASK-3 protein that mediate this inhibition. Guided by homology modeling and molecular docking, we hypothesized that PKTHPP and A1899 bind in the TASK-3 intracellular pore. ⋯ TASK-3 pore mutations at residues 122 (L122D, E, or K) and 236 (G236D) caused the IC50 of PKTHPP to increase more than 1000-fold. TASK-3 mutants L122D, G236D, L239D, and V242D were resistant to block by PKTHPP, A1899, and doxapram. Our data are consistent with a model in which breathing stimulant compounds PKTHPP, A1899, and doxapram inhibit TASK-3 function by binding at a common site within the channel intracellular pore region, although binding outside the channel pore cannot yet be excluded.