Molecular pharmacology
-
Molecular pharmacology · Dec 1996
Alniditan, a new 5-hydroxytryptamine1D agonist and migraine-abortive agent: ligand-binding properties of human 5-hydroxytryptamine1D alpha, human 5-hydroxytryptamine1D beta, and calf 5-hydroxytryptamine1D receptors investigated with [3H]5-hydroxytryptamine and [3H]alniditan.
Alniditan is a new migraine-abortive agent. It is a benzopyran derivative and therefore structurally unrelated to sumatriptan and other indole-derivatives and to ergoline derivatives. The action of sumatriptan is thought to be mediated by 5-hydroxytryptamine (5-HT)1D-type receptors. ⋯ Most compounds did not differentiate between 5-HT1D alpha and 5-HT1D beta receptors, except methysergide, ritanserin, ocaperidone, risperidone, and ketanserin, which showed 10-60-fold higher affinity for the 5-HT1D alpha receptor. The Ki values of the compounds obtained with 5-HT1D receptors in calf substantia nigra indicated that these receptors are of the 5-HT1D beta-type. We demonstrated that alniditan is a potent agonist at h5-HT1D alpha and h5-HT1D beta receptors; its properties probably underlie its cranial vasoconstrictive and antimigraine properties.
-
Molecular pharmacology · Nov 1996
Pharmacology of the human gamma-aminobutyric acidA receptor alpha 4 subunit expressed in Xenopus laevis oocytes.
The human gamma-aminobutyric acidA (GABAA) receptor alpha 4 subunit was recently cloned and characterized pharmacologically using radioligand binding techniques. These studies suggested that alpha 4 subunits confer a novel diazepam-insensitive binding site. To further investigate the pharmacology of the alpha 4 subunit, we expressed human alpha 4 beta 2 gamma 2L subunit combinations in oocytes and compared the expression and pharmacology of these receptors with alpha 1 beta 2 gamma 2L, beta 2 gamma 2L, and other possible binary subunit combinations. ⋯ The pharmacology conferred by the alpha 4 subunit was similar to that conferred by the alpha 6 subunit, to which it shows highest levels of homology, but the two subunits differ in sensitivity to the beta-carboline methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate. Properties of the alpha 4-containing receptors are consistent with diazepam-insensitive binding sites found in cerebral cortex and other forebrain structures. Characterization of these receptors should further our understanding of mechanisms underlying the behavioral effects of GABA modulators and help in the design of drugs with improved, or novel, therapeutic profiles.
-
Molecular pharmacology · Sep 1996
Cytochrome P450 2E1 is a cell surface autoantigen in halothane hepatitis.
Recent studies have shown that cytochrome P450 2E1 (CYP2E1) is a major catalyst of formation of trifluoroacetylated proteins, which have been implicated as target antigens in the mechanism of halothane hepatitis. In the present investigation, trifluoroacetylated CYP2E1 was detected immunochemically in livers of rats treated with halothane. Furthermore, high levels of autoantibodies that recognized purified rat CYP2E1 but not purified rat CYP3A were detected by enzyme-linked immunosorbent assay in 14 of 20 (70%) sera from patients with halothane hepatitis. ⋯ A very similar distribution was found for CYP2E1 in FGC4 cells, and immunoprecipitation experiments performed in cultures of FGC4-related Fao hepatoma cells suggest that surface immunoreactivity originates from a small fraction of intact CYP2E1 apoprotein. Human CYP2E1, expressed in V79 cells after cDNA transfection, was also detected to a minor extent in the plasma membrane, whereas no immunofluorescence was evident in parental V79 cells. It is suggested that immune responses to cell surface CYP2E1 could be involved in the pathogenesis of halothane hepatitis.
-
Molecular pharmacology · Sep 1996
The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons.
The somatostatin analogues D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) have been used widely as selective antagonists of mu-opioid receptors. Actions of CTOP and CTAP on the membrane properties of rat locus ceruleus neurons were studied using intracellular recordings of membrane currents in superfused brain slices. CTOP increased a K+ conductance with an EC50 of 560 nM. ⋯ CTAP did not antagonize K+ currents produced by CTOP or somatostatin. These results demonstrate that CTOP is a potent and efficacious agonist at nonopioid receptors, whereas CTAP is a potent mu-opioid receptor antagonist with little nonopioid agonist activity in rat locus ceruleus neurons. The receptor activated by CTOP has yet to be fully resolved but seems to be similar to the somatostatin type 2 receptor or perhaps to a receptor closely related to somatostatin or opioid receptors.
-
Molecular pharmacology · Aug 1996
Treatment of glioblastoma U-87 by systemic administration of an antisense protein kinase C-alpha phosphorothioate oligodeoxynucleotide.
Glioblastoma multiforme is the most common form of malignant brain cancer in adults and, unfortunately, is not amenable to treatment with current therapeutic modalities. Human glioblastoma U-87 has many of the distinguishing phenotypic features of primary glioblastoma, including an autocrine form of proliferation, high levels of protein kinase C alpha (PKC alpha), and infiltration via white matter tracts. We show that treatment of mice bearing U-87 xenografts with an antisense phosphorothioate oligodeoxynucleotide (S-oligodeoxynucleotide) against the 3'-untranslated region of PKC alpha mRNA results in suppression of tumor growth. ⋯ The intratumoral levels of both antisense and scrambled S-oligodeoxynucleotide in subcutaneous tumors were 2 microM after 21 daily doses of 20 mg/kg S-oligodeoxynucleotide. The antisense S-oligodeoxynucleotide selectively reduced the levels of PKC alpha in subcutaneous tumors but not those of protein kinase C epsilon or protein kinase C zeta. This is the first demonstration that the growth of glioblastoma multiforme can be suppressed by an antisense PKC alpha S-oligodeoxynucleotide and suggests that this may represent an effective therapy for this type of malignancy.