Resuscitation
-
Technical data now gathered by automated external defibrillators (AEDs) allows closer evaluation of the behavior of defibrillation shocks administered during out-of-hospital cardiac arrest. We analyzed technical data from a large case series to evaluate the change in transthoracic impedance between shocks, and to assess the heterogeneity of the probability of successful defibrillation across the population. ⋯ Impedance change between consecutive shocks is minimal and inconsistent. Therefore, to increase current of a subsequent shock requires an increase of the energy setting. Distribution of failed shocks is far from random. First shock defibrillation failure is often predictive of low efficacy for subsequent shocks.
-
To test the hypothesis that a fractional inspired oxygen (F(I)O(2)) of 1.0 compared to 0.4 during hemorrhagic shock (HS) and fluid resuscitation (FR): mitigates tissue dysoxia; however, enhances the oxidative stress; therefore, offsets the benefit on survival. ⋯ Supplemental oxygen does not mitigate tissue dysoxia during HS, but does reduce tissue dysoxia without enhancing oxidative stress during subsequent FR. Increased F(I)O(2) appears to prolong survival. These beneficial effects of supplemental oxygen do not differ between an F(I)O(2) of 0.4 and 1.0.
-
Letter Case Reports
Neurologic recovery following cardiac arrest due to carbon monoxide poisoning.