Resuscitation
-
Given challenges in collecting long-term outcomes for survivors of in-hospital cardiac arrest (IHCA), most studies have focused on in-hospital survival. We evaluated the correlation between a hospital's risk-standardized survival rate (RSSR) at hospital discharge for IHCA with its RSSR for long-term survival. ⋯ There was a strong correlation between a hospital's RSSR at discharge and its 30-day RSSR for IHCA, although this correlation weakens over time. Our findings suggest that a hospital's RSSR at discharge for IHCA may be a reasonable surrogate of its 30-day post-discharge survival and could be used by Medicare to benchmark hospital performance for this condition without collecting 30-day survival data.
-
Historically in Singapore, all out-of-hospital cardiac arrests (OHCA) were transported to hospital for pronouncement of death. A 'Termination of Resuscitation' (TOR) protocol, implemented from 2019 onwards, enables emergency responders to pronounce death at-scene in Singapore. This study aims to evaluate the cost-effectiveness of the TOR protocol for OHCA management. ⋯ The application of the TOR protocol for the management of OHCA was found to be cost-effective within acceptable willingness-to-pay thresholds, providing some justification for sustainable adoption.
-
This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Additionally, we aimed to explore the black box nature of AI models, providing explainability. ⋯ This study was the first to accurately predict shockable rhythms during compression using an AI model trained with actual patient ECGs recorded during resuscitation. Furthermore, we demonstrated the explainability of the AI. This model can minimize interruption of cardiopulmonary resuscitation and potentially lead to improved outcomes.
-
The combination of active compression-decompression cardiopulmonary resuscitation (ACD-CPR) with an impedance threshold device (ITD) and controlled head-up positioning (AHUP-CPR) is associated with improved outcomes compared with conventional CPR (C-CPR). This study focused on the role of active decompression (AD) during AHUP-CPR. ⋯ Full chest wall lift, achieved with ≥ 3 cm of AD, was needed to maintain and optimize hemodynamics during AHUP-CPR in pigs. These findings should be considered when optimizing care with this new approach.