Resuscitation
-
Chest compressions during CPR induce oscillations in capnography (ETCO2) waveforms. Studies suggest ETCO2 oscillation characteristics are associated with intrathoracic airflow dependent on airway patency. Oscillations can be quantified by the Airway Opening Index (AOI). We sought to evaluate multiple methods of computing AOI and their association with return of spontaneous circulation (ROSC). ⋯ We calculated AOI using four proposed methods resulting in significantly different AOI. Additionally, AOI and ΔETCO2 were larger in cases achieving ROSC. Further investigation is required to characterize AOI's ability to predict OHCA outcomes, and whether this information can improve resuscitation care.
-
Machine learning models are more accurate than standard tools for predicting neurological outcomes in patients resuscitated after cardiac arrest. However, their accuracy in patients with Coronavirus Disease 2019 (COVID-19) is unknown. Therefore, we compared their performance in a cohort of cardiac arrest patients with COVID-19. ⋯ Our gradient boosted machine model developed in non-COVID patients had high discrimination and adequate calibration in COVID-19 resuscitation survivors and may provide clinicians with important information for these patients.