Journal of orthopaedic research : official publication of the Orthopaedic Research Society
-
The rate of bone formation to bridge a fracture gap slows with age. To explore potential pathogenic mechanisms and possible negative-feedback responses by the skeleton to this reduced rate of healing, mRNA transcripts up-regulated more and/or longer were studied in older rats with delayed healing. Female rats at 6 (young), 26 (adult), and 52 (old) weeks of age received unilateral diaphyseal femoral fractures with intramedullary rod stabilization. ⋯ Of these, 60 were selected for more intense review. Significantly more and/or longer expression was seen in genes related to myofibroblasts, cell proliferation, calcification inhibition, TGF-beta activity, lipid metabolism, cell adhesion, and the cytoskeleton. Further study is needed to determine if these up-regulated transcripts are related to the pathological processes which slow healing or are related to attempts by the fracture tissue to stimulate bone to bridge the fracture gap.
-
This study presents a novel biodegradable alginate delivery system for antibiotics and bone cells to treat infected bone defects. About 2 x 10(7) New Zealand rabbit mesenchymal stem cells (MSCs) and 5 mL vancomycin solution (50 mg/mL) were added to 5 mL of 2.5% (w/v) sodium alginate solution to form biodegradable antibiotic and MSCs alginate beads 3 mm in diameter. The alginate beads were then cultured in an osteogenic medium for 14 days. ⋯ The results of in vitro study demonstrated sustained elution of vancomycin from the alginate carrier for 14 days and good osteogenic differentiation of cultured MSCs in the alginate carrier matrix. The results of in vivo study demonstrated the implanted MSCs participating in new bone formation. Based on experimental evidence, development of a biodegradable alginate carrier system for antibiotics and bone cells is possible, providing a potential treatment procedure for infected bone defects.
-
Vascular damage accompanying skeletal injury leads to an ischemic environment, and in clinical settings the extent of vascular damage is directly correlated with failure of skeletal repair. However, the exact mechanism(s) underlying ischemia-related defects in bone healing are not well understood. To better understand the mechanism and to facilitate development of novel interventions to treat ischemic fractures, a mouse model of long bone fracture healing in an ischemic environment was created. ⋯ In stabilized fractures, which healed through direct bone formation in the nonischemic controls, ischemia decreased the amount of bone formation at days 10 and 14 (n = 5/time point) but did not induce cartilage formation. These data reveal that an ischemic insult in the hind limb prior to fracture leads to a delayed union or a nonunion, but does not favor formation of cartilage over bone. This model will be useful for testing novel therapeutic regimens to stimulate fracture healing.
-
A biomechanical investigation on eight pairs of human cadaver proximal femurs was performed to evaluate the impact of a new augmentation method on the internal fixation of osteoporotic proximal femur fractures. The study focused on enhancing implant purchase to reduce the incidence of implant cut-out in osteoporotic bone. In a left-right comparison, a conventional hip screw fixation (control) was compared to the new cement augmentation method. ⋯ The displacement rate at the second load step was significantly higher (p=0.018) for the conventionally treated bones as compared to the augmented ones. All of the nonaugmented specimens failed during testing, where 50% of the augmented specimens did not fail. The promising results of these experiments suggest that this new standardized irrigation/augmentation method enhances the implant anchorage and offers a potential solution to the problem of implant cut-out in osteoporotic metaphyseal bone.
-
The purpose of this work was to obtain kinematics data for the normal human patellofemoral joint in vitro. Eight fresh-frozen cadaver knees were used. The heads of the quadriceps were separated, and the knees mounted in a kinematics rig. ⋯ The patella tilted progressively to 7 degrees lateral by 90 degrees knee flexion, and patellar medial-lateral rotation was usually less than 3 degrees. This is believed to be the first set of patellar tracking data obtained in both flexion and extension motion while the patella was acted on by a full set of quadriceps muscle tensions acting in physiological directions. These data may be used in future studies of the effects of pathologies on patellar tracking.