Journal of orthopaedic research : official publication of the Orthopaedic Research Society
-
Antagonistic trunk muscle activity is normally required to stabilize the spine. A lumbosacral orthosis (LSO) might reduce the need for this antagonistic activity by providing passive stiffness to the trunk and increasing spine stability. The maximum reduction in trunk muscle EMG and in the resultant spine compression force due to the LSO was estimated using a biomechanical model. ⋯ The resultant spine compression force averaged across all tasks decreased by only 355 N. A much larger variance of the experimental data precluded the detection of these effects at statistically significant levels. However, the small effects size does not necessarily exclude the possibility of functional benefits of slightly reducing muscle activity in patients with low back pain.
-
Comparative Study
Comparison of unreamed nailing and external fixation of tibial diastases--mechanical conditions during healing and biological outcome.
Locked intramedullary nailing and external fixation are alternatives for the stabilization of tibial shaft fractures. The goal of this study was to determine to what extent the mechanical conditions at the fracture site influence the healing process after unreamed tibial nailing compared to external fixation. A standardized tibial diastasis was stabilized with either a locked unreamed tibial nail or a monolateral fixator in a sheep model. ⋯ Unlike the fixator group, the operated limb in the nail group did not return to full weight bearing during the treatment period. Mechanical and histomorphometrical observations showed significantly inferior bone healing in the nail group compared to the fixator group. In this study, unreamed nailing of a tibial diastasis did not provide rotational stability of the osteosynthesis and resulted in a significant delay in bone healing.
-
At the end ranges of motion, the glenohumeral capsule limits translation of the humeral head in multiple directions. Since the 6-degree of freedom kinematics of clinical tests are commonly utilized to diagnose shoulder injuries, the objective of this study was to determine the magnitude and repeatability of glenohumeral joint kinematics during a simulated simple anteroposterior translation test in the anterior and posterior directions. A magnetic tracking system was used to determine the kinematics of the humerus with respect to the scapula in eight cadaveric shoulders. ⋯ Based on the data obtained, performing a simulated simple translation test should result in coupled inferior translations and anterior translations that are a function of external rotation. The low standard deviations demonstrate that the observed translations should be repeatable. Furthermore, capsular stretching or injury to the anterior-inferior region of the capsule should be detectable during clinical examination if excessive coupled translations exist or no posterior shift of the reference position with external rotation is noted.
-
Altered patellofemoral joint contact pressures are thought to contribute to patellofemoral joint symptoms. However, little is known about the relationship between tibiofemoral joint kinematics and patellofemoral joint contact pressures. The objective of this paper was to investigate the effect of tibiofemoral joint kinematics on patellofemoral joint pressures using an established in vitro robotic testing experimental setup. ⋯ These results imply that excessive strength conditioning with the hamstring muscles might not be beneficial to the patellofemoral joint. Knee pathology that causes an increase in tibial posterior translation and external rotation might contribute to degeneration of the patellofemoral joint. These results suggest that conservative treatment of posterior cruciate ligament injury should be reconsidered.
-
The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
Interfragmentary displacement has a main effect on callus formation in fracture healing. To test whether compressive or distractive displacements have a more pronounced effect on new bone formation, a sheep osteotomy model was created whereby the gap tissue was subjected to constant bending displacement. A diaphyseal osteotomy with a gap of 2 mm was created in 18 sheep tibiae and stabilized with a special unilateral actuator-driven external fixator. ⋯ Solid periosteal bridging of the gap was observed in two sheep in the control group, whereas bridging in the cycled groups was observed exclusively at the medullary side. In conclusion, cyclic compressive displacements were found to be superior over distractive displacements. A higher number of enforced and maintained compressive displacements enhanced periosteal callus formation but did not allow bony bridging of the gap.