Upsala journal of medical sciences
-
The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. ⋯ Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.
-
The rise of antibiotic-resistant bacterial strains, causing intractable infections, has resulted in an increased interest in phage therapy. Phage therapy preceded antibiotic treatment against bacterial infections and involves the use of bacteriophages, bacterial viruses, to fight bacteria. Virulent phages are abundant and have proven to be very effective in vitro, where they in most cases lyse any bacteria within the hour. ⋯ Phages are effective only if enough of them can reach the bacteria and increase in number in situ. Taken together, this entails high demands on resources for the construction of phage libraries and the testing of individual phages. The effectiveness and host range must be characterized, and immunological risks must be assessed for every single phage.
-
The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. ⋯ Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.
-
Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. ⋯ Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.
-
Tuberculosis (TB) represents a major public health problem. The growing number of (extensively) multi-drug resistance cases indicates that there is an urgent need for discovery of new anti-TB entities, addressed towards new and specific targets, and continuous development of fast and efficient synthetic strategies to access them easily. ⋯ Microwave-assisted high-speed organic synthesis is especially useful in the lead optimization phase of drug discovery. To illustrate the advantages of modern microwave heating technology, we herein describe applications and approaches that have been useful for the synthesis of new drug-like anti-TB compounds.