Upsala journal of medical sciences
-
This paper addresses: 1) Situations where human behaviour is involved in relation to antibiotics, focusing on providers and consumers; 2) Theories about human behaviour and factors influencing behaviour in relation to antibiotics; 3) How behaviour in relation to antibiotics can change; and, 4) Antibiotic mainstreaming as an approach to facilitate changes in human behaviour as regards antibiotics. Influencing human behaviour in relation to antibiotics is a complex process which includes factors like knowledge, attitudes, social norms, socio-economic conditions, peer pressure, experiences, and bio-physical and socio-behavioural environment. Further, key concepts are often perceived in different ways by different individuals. ⋯ In conclusion, just providing correct knowledge is not sufficient although it is a pre-requisite for behaviour modification in the desired direction. We can never change the behaviour of any other human, but we can facilitate for others to change their own behaviour. One possibility is to implement 'antibiotic mainstreaming' as a potentially effective way for behaviour modification, i.e. to address consequences for maintaining effective antibiotics in all activities and decisions in society.
-
Although theoretically attractive, the reversibility of resistance has proven difficult in practice, even though antibiotic resistance mechanisms induce a fitness cost to the bacterium. Associated resistance to other antibiotics and compensatory mutations seem to ameliorate the effect of antibiotic interventions in the community. In this paper the current understanding of the concepts of reversibility of antibiotic resistance and the interventions performed in hospitals and in the community are reviewed.
-
Antibiotics are the medical wonder of our age, but an increasing frequency of resistance among key pathogens is rendering them less effective. If this trend continues the consequences for cancer patients, organ transplant patients, and indeed the general community could be disastrous. The problem is complex, involving abuse and overuse of antibiotics (selecting for an increasing frequency of resistant bacteria), together with a lack of investment in discovery and development (resulting in an almost dry drug development pipeline). ⋯ Here we outline the complex process involved in taking a potential novel antibiotic from the initial discovery of a hit molecule, through lead and candidate drug development, up to its entry into phase I clinical trials. The stringent criteria that a successful drug must meet, balancing high efficacy in vivo against a broad spectrum of pathogens, with minimal liabilities against human targets, explain why even with sufficient investment this process is prone to a high failure rate. This emphasizes the need to create a well-funded antibiotic discovery and development pipeline that can sustain the continuous delivery of novel candidate drugs into clinical trials, to ensure the maintenance of the advanced medical procedures we currently take for granted.
-
Spread of antibiotic resistance is mediated by clonal lineages of bacteria that besides being resistant also possess other properties promoting their success. Some vaccines already in use, such as the pneumococcal conjugate vaccines, have had an effect on these successful clones, but at the same time have allowed for the expansion and resistance evolution of previously minor clones not covered by the vaccine. Since resistance frequently is horizontally transferred it will be difficult to generate a vaccine that covers all possible genetic lineages prone to develop resistance unless the vaccine target(s) is absolutely necessary for spread and/or disease development. Targeting the resistance mechanism itself by a vaccine is an interesting but hitherto unexplored approach.