Journal of leukocyte biology
-
A defining feature of protracted sepsis is development of immunosuppression that is thought to be a major driving force in the morbidity and mortality associated with the syndrome. The immunosuppression that occurs in sepsis is characterized by profound apoptosis-induced depletion of CD4 and CD8 T cells and severely impaired T cell function. OX40, a member of the TNF receptor superfamily, is a positive co-stimulatory molecule expressed on activated T cells. ⋯ Importantly, OX40 agonistic Ab was not only effective in murine sepsis but also improved T effector cell function in PBMCs from patients with sepsis. The present results provide support for the use of immune adjuvants that target T cell depletion and T cell dysfunction in the therapy of sepsis-induced immunosuppression. In addition to the checkpoint inhibitors anti-PD-1 and anti-PD-L1, OX40 agonistic Ab may be a new therapeutic approach to the treatment of this highly lethal disorder.
-
Clinical Trial
Mismatch between circulating cytokines and spontaneous cytokine production by leukocytes in hyperinflammatory COVID-19.
The disease COVID-19 has developed into a worldwide pandemic. Hyperinflammation and high levels of several cytokines, for example, IL-6, are observed in severe COVID-19 cases. However, little is known about the cellular origin of these cytokines. ⋯ Additionally, they are responsive to further activation. This data supports the notion of IL-1β blockade in treatment of COVID-19. However, the source of the high levels of IL-6 remains to be determined.
-
Clinical evidence indicates that the fatal outcome observed with severe acute respiratory syndrome-coronavirus-2 infection often results from alveolar injury that impedes airway capacity and multi-organ failure-both of which are associated with the hyperproduction of cytokines, also known as a cytokine storm or cytokine release syndrome. Clinical reports show that both mild and severe forms of disease result in changes in circulating leukocyte subsets and cytokine secretion, particularly IL-6, IL-1β, IL-10, TNF, GM-CSF, IP-10 (IFN-induced protein 10), IL-17, MCP-3, and IL-1ra. Not surprising, therapies that target the immune response and curtail the cytokine storm in coronavirus 2019 (COVID-19) patients have become a focus of recent clinical trials. ⋯ In examining leukocyte and cytokine activity in COVID-19, we focus in particular on how these levels are altered as the disease progresses (neutrophil NETosis, macrophage, T cell response, etc.) and proposed consequences to organ pathology (coagulopathy, etc.). Viral and host interactions are described to gain further insight into leukocyte biology and how dysregulated cytokine responses lead to disease and/or organ damage. By better understanding the mechanisms that drive the intensity of a cytokine storm, we can tailor treatment strategies at specific disease stages and improve our response to this worldwide public health threat.
-
Observational Study
Frontline Science: Low regulatory T cells predict perioperative major adverse cardiovascular and cerebrovascular events after noncardiac surgery.
Immune cells drive atherosclerotic lesion progression and plaque destabilization. Coronary heart disease patients undergoing noncardiac surgery are at risk for perioperative major adverse cardiac and cerebrovascular events (MACCE). It is unclear whether differential leukocyte subpopulations contribute to perioperative MACCE and thereby could aid identification of patients prone to perioperative cardiovascular events. ⋯ After multivariate logistic regression, Tregs < 0.027 cells nl-1 remained an independent predictor for MACCE (OR = 2.54 [1.22; 5.23], P = 0.012). Tregs improved risk discrimination of the revised cardiac risk index based on ΔAUC (area under the curve; ΔAUC = 0.09, P = 0.02), NRI (0.26), and IDI (0.06). Preoperative Treg levels below 0.027 cells nl-1 predicted perioperative MACCE and can be measured to increase accuracy of established preoperative cardiac risk stratification in coronary heart disease patients undergoing noncardiac surgery.
-
Pseudomonas aeruginosa is one of the most common opportunistic pathogens causing respiratory infections in hospitals. Vancomycin, the antimicrobial agent usually used to treat bacterial nosocomial infections, is associated with gut dysbiosis. As a lung-gut immunologic axis has been described, this study aimed to evaluate both the immunologic and histopathologic effects on the lungs and the large intestine resulting from vancomycin-induced gut dysbiosis in the P. aeruginosa pneumonia murine model. ⋯ The susceptible and tissue damage phenotype was reversed when dysbiotic mice received fecal microbiota transplantation. In spite of higher recruitment of CD11b+ cells in the lungs, there was no higher CD80+ expression, DC+ cell amounts or proinflammatory cytokine expression. Taken together, our results indicate that the bacterial community found in vancomycin-induced dysbiosis dysregulates the gut inflammatory status, influencing the lung-gut immunologic axis to favor increased opportunistic infections, for example, by P. aeruginosa.