Journal of leukocyte biology
-
A role of immunosuppressive M2 monocytes (IL-12(-)IL-10(+)) on the increased susceptibility of severely burned patients to various opportunistic pathogens has been described. Among M2 monocyte subpopulations, M2b monocytes (IL-17(-)CCL1(+)CXCL13(-)) are predominantly present in the peripheral blood of severely burned patients. In the present study, the rise and fall of M2b monocytes were examined in severely burned patients treated with propranolol. ⋯ IL-12 was produced by propranolol-treated patient monocytes after stimulation with Staphylococcus aureus antigen, and the production of IL-10, CCL1, CCL17, or CXCL13 by these monocytes was not demonstrated. These results indicate that a predominance of M2b monocytes in severely burned patients is intervened by the propranolol treatment. The increased susceptibility, to be associated with the appearance of M2b monocytes, of severely burned patients to opportunistic pathogens might be controlled by propranolol.
-
Statins have been reported to exert anti-inflammatory actions and protect against septic organ dysfunction. Herein, we hypothesized that simvastatin may attenuate neutrophil activation and lung damage in abdominal sepsis. Male C57BL/6 mice were pretreated with simvastatin (0.5 or 10 mg/kg) before CLP. ⋯ Moreover, simvastatin abolished CLP-evoked formation of CXC chemokines in the lung, and a CXCR2 antagonist attenuated pulmonary accumulation of neutrophils. Our data suggest that the inhibitory effect of simvastatin on pulmonary accumulation of neutrophils may be related to a reduction of CD40L secretion into the circulation, as well as a decrease in CXC chemokine formation in the lung. Thus, these protective mechanisms help to explain the beneficial actions exerted by statins, such as simvastatin, in sepsis.
-
Protection against sepsis-induced lung injury by selective inhibition of protein kinase C-δ (δ-PKC).
Inflammation and proinflammatory mediators are activators of δ-PKC. In vitro, δ-PKC regulates proinflammatory signaling in neutrophils and endothelial and epithelial cells, cells that can contribute to lung tissue damage associated with inflammation. In this study, a specific δ-PKC TAT peptide inhibitor was used to test the hypothesis that inhibition of δ-PKC would attenuate lung injury in an animal model of ARDS. ⋯ Most importantly, intratracheal administration of δ-PKC TAT peptide significantly attenuated inflammatory cell infiltration, disruption of lung architecture, and pulmonary edema associated with 2CLP. Thus, δ-PKC is an important regulator of proinflammatory events in the lung. Targeted inhibition of δ-PKC exerted a lung-protective effect 24 h after 2CLP.
-
Hypertonic saline (HS) resuscitation increases T cell function and inhibits posttraumatic T cell anergy, which can reduce immunosuppression and sepsis in trauma patients. We have previously shown that HS induces the release of cellular ATP and enhances T cell function. However, the mechanism by which HS induces ATP release and the subsequent regulation of T cell function by ATP remain poorly understood. ⋯ Moreover, treatment with HS or agonists of P2X receptors overcomes T cell suppression induced by the anti-inflammatory cytokine IL-10. These findings indicate that Panx1 hemichannels facilitate ATP release in response to hypertonic stress and that P2X1, P2X4, and P2X7 receptor activation enhances T cell function. We conclude that HS and P2 receptor agonists promote T cell function and thus, could be used to improve T cell function in trauma patients.
-
There is increasing recognition that a major pathophysiologic event in sepsis is the progression to an immunosuppressive state in which the host is unable to eradicate invading pathogens. Although there are likely numerous causes for the immunosuppression, expression of negative costimulatory molecules on immune effector cells is a likely contributing factor. PD-1 is a recently described, negative costimulatory molecule that has potent effects to inhibit T cell activation, cytokine production, and cytotoxic functions. ⋯ Anti-PD-1 also prevented the loss in DTH, a key indicator of immunocompetence in sepsis. Thus, delayed administration of anti-PD-1 antibody, an important therapeutic advantage, was effective in sepsis. Furthermore, these results add to the growing body of evidence that modulation of the positive and negative costimulatory pathways on immune cells represents a viable therapeutic approach in reversing immunosuppression and improving sepsis survival.