Vaccine
-
Maintaining health of healthcare workers with vaccination is a major component of pandemic preparedness and acceptance of vaccinations is essential to its success. This study aimed to examine impact of the coronavirus disease 2019 (COVID-19) pandemic on change of influenza vaccination acceptance and identify factors associated with acceptance of potential COVID-19 vaccination. ⋯ With a low level of COVID-19 acceptance intentions and high proportion of hesitation in both influenza and COVID-19 vaccination, evidence-based planning are needed to improve the uptake of both vaccinations in advance of their implementation. Future studies are needed to explore reasons of change of influenza vaccination acceptance, look for actual behaviour patterns of COVID-19 vaccination acceptance and examine effectiveness of promotion strategies.
-
The world is facing the COVID-19 pandemic. The development of a vaccine is challenging. We aimed to determine the proportion of people who intend to get vaccinated against COVID-19 in France or to participate in a vaccine clinical trial. ⋯ Nearly 75% and 48% of the survey respondents were respectively likely to accept vaccination or participation in a clinical trial against COVID-19. Vaccine hesitancy will be the major barrier to COVID-19 vaccine uptake.
-
Influenza vaccine hesitancy among healthcare workers poses challenges to the achievement of herd immunity and causes infection risks to vulnerable patients. This study aimed to quantify the extent of influenza vaccine hesitancy among nurses in Hong Kong, to delineate its pattern, and to explore its socio-demographic, professional and personal correlates. ⋯ With more than half of the nurses in Hong Kong having moderate or higher level of influenza vaccine hesitancy, interventions customised to the needs of nurses as reflected from the characteristics of clusters along the vaccine hesitancy continuum could form an important strategy for improving vaccination uptake.
-
The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. ⋯ It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.
-
Coronavirus disease 2019 (COVID-19) was declared a pandemic in March 2020. Several prophylactic vaccines against COVID-19 are currently in development, yet little is known about people's acceptability of a COVID-19 vaccine. ⋯ Many adults are willing to get a COVID-19 vaccine, though acceptability should be monitored as vaccine development continues. Our findings can help guide future efforts to increase COVID-19 vaccine acceptability (and uptake if a vaccine becomes available).