Vaccine
-
To review the approaches used in the cost-effectiveness analysis (CEAs) literature to estimate the cost of expanded program on immunization (EPI) activities, other than vaccine purchase, for rotavirus and pneumococcal vaccines. ⋯ Many pneumococcal (52.8%) and rotavirus (60.4%) cost-effectiveness analyses did not consider additional EPI costs or used poorly supported assumptions. Ignoring EPI costs in addition to those for vaccine procurement in CEA analysis of new vaccines may lead to significant errors in the estimations of ICERs since several factors like personnel, cold chain, or social mobilization can be substantially affected by the introduction of new vaccines.
-
The Decade of Vaccines Global Vaccine Action Plan has outlined a set of ambitious goals to broaden the impact and reach of immunization across the globe. A projections exercise has been undertaken to assess the costs, financing availability, and additional resource requirements to achieve these goals through the delivery of vaccines against 19 diseases across 94 low- and middle-income countries for the period 2011-2020. The exercise draws upon data from existing published and unpublished global forecasts, country immunization plans, and costing studies. ⋯ About 57% of the total resources required to close the funding gap are needed just to maintain existing programs and scale up other currently available vaccines (i.e., before adding in the additional costs of vaccines still in development). Efforts to mobilize additional resources, manage program costs, and establish mutual accountability between countries and development partners will all be necessary to ensure the goals of the Decade of Vaccines are achieved. Establishing or building on existing mechanisms to more comprehensively track resources and commitments for immunization will help facilitate these efforts.
-
Group A streptococci (GAS) are important causes of morbidity and mortality worldwide. These organisms cause a wide spectrum of disease, ranging from uncomplicated sore throat to invasive, life-threatening infections, as well as immune complications such as acute rheumatic fever (ARF), rheumatic heart disease (RHD) and acute post-streptococcal glomerulonephritis (APSGN). Vaccine prevention of GAS infections and their immunological complications has been a goal of researchers for decades. ⋯ Some of the obstacles to GAS vaccine development are related to the complexity of the global epidemiology of GAS infections, the limitation in the criteria for selection of antigens to include in combination vaccines as well as the issues around autoimmunity and vaccine safety, among others. Overcoming these obstacles will require collaborative efforts to develop innovative strategies that address key steps in the pre-clinical and clinical development process, as well as clearly defining the global burden of GAS diseases and the molecular epidemiology of infections. Specific recommendations are presented for an accelerated plan leading to the introduction of a broadly protective vaccine designed for deployment in low-, middle-, and high-income countries.
-
From August to December 2011, a multidisciplinary group with expertise in mathematical modeling was constituted by the GAVI Alliance and the Bill & Melinda Gates Foundation to estimate the impact of vaccination in 73 countries supported by the GAVI Alliance. ⋯ Vaccination of persons during 2011-2020 in 73 GAVI-eligible countries is expected to have substantial public health impact, particularly in Africa and Southeast Asia, two regions with high mortality. The actual impact of vaccination in these countries may be higher than our estimates because several widely used antigens were not included in the analysis. The quality of our estimates is limited by lack of data on underlying disease burden and vaccine effectiveness against fatal disease outcomes in developing countries. We plan to update the estimates annually to reflect updated demand forecasts, to refine model assumptions based on results of new information, and to extend the analysis to include morbidity and economic benefits.
-
The Developing Countries Vaccine Manufacturers Network (DCVMN) is a unique model of a public and private international alliance. It assembles governmental and private organizations to work toward a common goal of manufacturing and supplying high-quality vaccines at affordable prices to protect people around the world from known and emerging infectious diseases. Together, this group of manufacturers has decades of experience in manufacturing vaccines, with technologies, know-how, and capacity to produce more than 40 vaccines types. ⋯ Furthermore, more than 45 vaccines are in the pipeline. Recent areas of focus include vaccines to protect against rotavirus, human papillomavirus (HPV), Japanese encephalitis, meningitis, hepatitis E, poliovirus, influenza, and pertussis, as well as combined pentavalent vaccines for children. The network has a growing number of manufacturers that produce a growing number of products to supply the growing demand for vaccines in developing countries.