Neuroscience research
-
Neuroscience research · Jul 2003
Comparative StudyDelayed neuronal damage related to microglia proliferation after mild spinal cord compression injury.
In order to investigate the mechanism of delayed progressive or secondary neuronal damage after the spinal cord injury, we developed a mild-compression injury model in the rat thoracic spinal cord. Our compression device consists of a soft silicone point of contact to the dura, in order to prevent violent injury that may cause axonal tears or hemorrhages in the spinal cord. Since rats often assume a 'standing' posture, i.e. raising head with lifting their fore-limbs, damage to the thoracic spinal cord was evaluated by measuring the frequency of 'standing', which effectively indicates hind limb function. ⋯ In the compressed spinal cord tissue, microglial cells, detected by lectin staining, proliferated with time. An enormous amount of microglia was observed at 48 and 72 h after compression, although only a small amount of cells were positive to lectin staining at 24 h after the compression. These results suggest that our mild-compression spinal cord injury model showed late-onset or delayed neuronal damage that may be related to pathological microglia proliferation.
-
Neuroscience research · Nov 2002
Serum cholesterol, uric acid and cholinesterase in victims of the Tokyo subway sarin poisoning: a relation with post-traumatic stress disorder.
Cholesterol and uric acid, which might correlate with steroidogenesis and monoamine functions, may change under emotionally stressful conditions and in mental disturbances. Among anxiety disorders, an increase of serum cholesterol has been observed in panic disorder. However, the issue has not been adequately investigated in other anxiety disorders, including post-traumatic stress disorder (PTSD). ⋯ Several factors including co-occurrence of other mental disturbances with PTSD, in addition to the limited sample size, might have affected the result. In contrast, serum cholinesterase level was significantly reduced in the victims with the development of PTSD, compared with the matched controls (P<0.02, t-test). This might partly reflect a long-term remnant effect of sarin intoxication, although an effect of the psychological experience could not be totally excluded.
-
Neuroscience research · Oct 2002
ReviewMolecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys?
Opioids and ethanol have been used since ancient times for pain relief. Opioid signaling is mediated by various effectors, including G protein-activated inwardly rectifying potassium (GIRK) channels, adenylyl cyclases, voltage-dependent calcium channels, phospholipase Cbeta(PLCbeta), and mitogen-activated protein kinases, although it has been unclear which effector mediates the analgesic effects of opioids. Ethanol induces a variety of physiological phenomena via various proteins, including GIRK channels rather than via membrane lipids. ⋯ This hypothesis is supported by similar findings in GIRK2 knockout mice. Among the various effectors coupled with opioid receptors and various targets of ethanol, GIRK channels are the only molecules whose involvement in opioid- and ethanol-induced analgesia has been demonstrated in vivo. The GIRK channel is potentially one of the key molecules in furthering the understanding of the pain control system and in developing advanced analgesics with fewer adverse effects.
-
Neuroscience research · Oct 2002
Comparative StudyNeuronal nitric oxide has a role as a perfusion regulator and a synaptic modulator in cerebellum but not in neocortex during somatosensory stimulation--an animal PET study.
To clarify a role of neuronal nitric oxide in neurovascular coupling, we performed cerebral blood flow (CBF) and cerebral metabolic rate of glucose (CMR(glc)) measurements with positron emission tomography in somatosensory-stimulated cats using a specific neuronal nitric oxide synthase inhibitor, 7-nitroindazole (7-NI). The effect on flow-metabolism coupling were tested by global and regional-specific changes on CBF and CMR(glc), and the regional-specific effect was estimated both by regions of interest (ROI) and voxel-based (VB) analysis using globally-normalized CBF and CMR(glc) changes. ⋯ Both ROI and VB analysis showed that 7-NI induced an increase in CMR(glc) (13%) in the ipsilateral cerebellum compared to control under vehicle alone, but it was accompanied by only 8% increase in CBF, suggesting uncoupling of flow-metabolism while it induced any perturbations in the contralateral somatosensory cortex. These observations suggest that neuronal nitric oxide has an important role for a mediator of regional neurovascular coupling as well as synaptic modulator in the cerebellum, but less so in the neocortex.
-
Neuroscience research · Aug 2002
Differential effects of NMDA and AMPA/KA receptor antagonists on c-Fos or Zif/268 expression in the rat spinal dorsal horn induced by noxious thermal or mechanical stimulation, or formalin injection.
The involvement of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate (KA) receptors in the induction of c-Fos and Zif/268 expression in spinal dorsal horn neurons following noxious thermal or mechanical stimulation, or formalin injection into the rat hind paw was examined by intrathecal administration of a competitive NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV) or an AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or both, 30 min prior to noxious stimulation. APV caused a significant reduction in the level of c-Fos expression in the superficial layer induced by each of these three noxious stimuli. The effects of APV on Zif/268 expression or of CNQX on c-Fos or Zif/268 expression in the superficial layer induced by these three noxious stimuli were dependent on the type of stimulus applied to the rat hind paw. ⋯ Both c-Fos and Zif/268 expressions following formalin injection were reduced by APV alone and APV+CNQX, but not by CNQX alone. Zif/268 expression following noxious mechanical stimulation was significantly reduced only by APV+CNQX although APV or CNQX alone did not affect the expression, while c-Fos expression was reduced by APV and APV+CNQX but not by CNQX alone. These findings suggest that NMDA and AMPA/KA receptors are differentially involved in c-Fos and Zif/268 expression in the spinal dorsal horn following noxious thermal, formalin and mechanical stimulation.