Chronobiology international
-
Comparative Study
Rhythmic cFos expression in the ventral subparaventricular zone influences general activity rhythms in the Nile grass rat, Arvicanthis niloticus.
Circadian rhythms in behavior and physiology are very different in diurnal and nocturnal rodents. A pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for generating and maintaining circadian rhythms in mammals, and cellular and molecular rhythms within the SCN of diurnal and nocturnal rodents are very similar. The neural substrates determining whether an animal has a diurnal or nocturnal phase preference are thus likely to reside downstream of the SCN. ⋯ However, the number of cells expressing cFos in the vSPVZ was positively correlated with general activity during the subjective day relative to the subjective night when the animals were switched to DD, and this pattern persisted when a LD cycle was reinstated. Also, the number of cFos-ir cells in the vSPVZ was negatively correlated with the strength of rhythmicity in DD and the number of days required to re-entrain to a LD cycle following several weeks in DD. These data suggest that the vSPVZ emits signals important for the expression of stable diurnal activity patterns in grass rats, and that species differences in these signals may contribute to differences in behavioral and physiological rhythms of diurnal and nocturnal mammals. (Author correspondence: mschw009@umaryland.edu ).
-
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. ⋯ There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm.
-
Light treatment has been used as a non-pharmacological tool to help mitigate poor sleep quality frequently found in older people. In order to increase compliance to non-pharmacological light treatments, new, more efficacious light-delivery systems need to be developed. A prototype personal light-treatment device equipped with low brightness blue light-emitting diodes (LEDs) (peak wavelength near 470 nm) was tested for its effectiveness in suppressing nocturnal melatonin, a measure of circadian stimulation. ⋯ The higher level of blue light suppressed melatonin more quickly, to a greater extent over the course of the 90 min exposure period, and maintained suppression after 60 min. The constant exposure of the low-light level resulted in a decrease in nocturnal melatonin suppression for the last sampling time, whereas for the high-light level, suppression continued throughout the entire exposure period. The present study performed with healthy adults suggests that the tested personal light-treatment device might be a practical, comfortable, and effective way to deliver light treatment to those suffering from circadian sleep disorders; however, the acceptance and effectiveness of personal light-treatment devices by older people and by other segments of the population suffering from sleep disorders in a real-life situation need to be directly tested.
-
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. ⋯ However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7-10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.
-
Fatigue risk associated with work schedules of hospital doctors is coming under increasing scrutiny, with much of the research and regulatory focus on trainees. However, provision of 24 h services involves both trainees and specialists, who have different but interdependent work patterns. This study examined work patterns, sleep (actigraphy, diaries) and performance (psychomotor vigilance task pre- and post-duty) of 28 anaesthesia trainees and 20 specialists across a two-week work cycle in two urban public hospitals. ⋯ For both trainees and specialists, robust circadian variation in PVT performance was evident in this complex work setting, despite the potential confounds of variable shift durations and workloads. The relationship between PVT performance of an individual and the safe administration of anaesthesia in the operating theater is unknown. Nevertheless, the findings reinforce that any schedule changes to reduce work-related fatigue need to consider circadian performance variation and the potential transfer of workload and fatigue risk between trainees and specialists.