Chronobiology international
-
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. ⋯ The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.
-
Ships are operated around the clock using rapidly rotating shift schedules called sea watch systems. Sea watch systems may cause fatigue, in the same way as other irregular working time arrangements. The present study investigated subjective sleepiness and sleep duration in connection with a 6 h on/6 h off duty system. ⋯ This suppression may be explained by the "masking effect" exerted by the relative high levels of activity required when taking over the responsibility of the ship. Toward the end of watches, the levels of sleepiness progressively increased to relatively high levels, at least during the 00:00-06:00 h watch. Presumably, initially high levels of activity are replaced by routine and even boredom.
-
The frequency and severity of adverse events in Australian healthcare is under increasing scrutiny. A recent state government report identified 31 events involving "death or serious [patient] harm" and 452 "very high risk" incidents. Australia-wide, a previous study identified 2,324 adverse medical events (AME) in a single year, with more than half considered preventable. ⋯ Further, a measurable number of errors occur of various types and severity. Less sleep may lead to the increased likelihood of making an error, and importantly, the decreased likelihood of catching someone else's error. These pilot results suggest that further investigation into the effects of sleep loss in nursing may be necessary for patient safety from an individual nurse perspective and from a healthcare team perspective.
-
Controlled Clinical Trial
Morning melatonin has limited benefit as a soporific for daytime sleep after night work.
Exogenous melatonin administration in humans is known to exert both chronobiotic (phase shifting) and soporific effects. In a previous study in our lab, young, healthy, subjects worked five consecutive simulated night shifts (23:00 to 07:00 h) and slept during the day (08:30 to 15:30 h). Large phase delays of various magnitudes were produced by the study interventions, which included bright light exposure during the night shifts, as assessed by the dim light melatonin onset (DLMO) before (baseline) and after (final) the five night shifts. ⋯ Although melatonin was associated with small improvements in sleep quality and quantity, the differences were not statistically significant by analysis of variance. However, binomial analysis indicated that melatonin participants were more likely to sleep better than their placebo counterparts on some days with some measures. It was concluded that, the soporific effect of melatonin is small when administered prior to 7 h daytime sleep periods following night shift work.
-
Case Reports
Working under daylight intensity lamp: an occupational risk for developing circadian rhythm sleep disorder?
A 47-yr-old male was admitted to the Institute for Fatigue and Sleep Medicine complaining of severe fatigue and daytime sleepiness. His medical history included diagnosis of depression and chronic fatigue syndrome. Antidepressant drugs failed to improve his condition. ⋯ In addition, the patient reported profound improvement in maintaining wakefulness during the day. This case study shows that chronic exposure to bright light at the wrong biological time, during the nighttime, may have serious effects on the circadian sleep-wake patterns and circadian time structure. Therefore, night bright light exposure must be considered to be a risk factor of previously unrecognized occupational diseases of altered circadian time structure manifested as irregularity of the 24 h sleep-wake cycle and melancholy.