Chronobiology international
-
Continuous recordings of core body temperature (CBT) are a well-established approach in describing circadian rhythms. Given the discomfort of invasive CBT measurement techniques, the use of skin temperature recordings has been proposed as a surrogate. More recently, we proposed a heat-flux approach (the so-called Double Sensor) for monitoring CBT. ⋯ Based on these data we conclude that (1) Double Sensor recordings are significantly superior to skin temperature measurements for non-invasively assessing the circadian rhythm of rectal temperature, and (2) temperature rhythms from the sternum are less reliable than from the forehead. We suggest that forehead Double Sensor recordings may provide a surrogate for rectal temperature in circadian rhythm research, where constant routine protocols are applied. Future studies will be needed to assess the sensor's ecological validity outside the laboratory under changing environmental and physiological conditions.
-
Reduced nocturnal secretion of melatonin, a pineal hormone under circadian control, and obstructive sleep apnea have been both identified as risk factors for the development of type 2 diabetes mellitus. Whether they interact to impact glycemic control in patients with existing type 2 diabetes is not known. Therefore, this study explores the relationships between obstructive sleep apnea, melatonin and glycemic control in type 2 diabetes. ⋯ In addition, having retinopathy was significantly associated with reduced nocturnal urinary 6-sulfatoxymelatonin/creatinine ratio, and an increase in HbA1c by 1.013% of its original value (B = -0.013, 95% CI: -0.038, -0.005). In conclusion, the presence and severity of obstructive sleep apnea as well as the presence of diabetic retinopathy were associated with lower nocturnal melatonin secretion, with an indirect adverse effect on glycemic control. Intervention studies are needed to determine whether melatonin supplementation may be beneficial in type 2 diabetes patients with obstructive sleep apnea.
-
Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2-/- mice (n = 9) in light:dark periods and in complete darkness. ⋯ QTmean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2-/-. The amplitude of the circadian rhythm in QTmean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2-/-, respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.
-
Biological processes are organized in time as innate rhythms defined by the period (τ), phase (peak [Φ] and trough time), amplitude (A, peak-trough difference) and mean level. The human time structure in its entirety is comprised of ultradian (τ < 20 h), circadian (20 h > τ < 28 h) and infradian (τ > 28 h) bioperiodicities. The circadian time structure (CTS) of human beings, which is more complicated than in lower animals, is orchestrated and staged by a brain central multioscillator system that includes a prominent pacemaker - the suprachiasmatic nuclei of the hypothalamus. ⋯ Poorly conceived medical interventions, for example nighttime dosing of synthetic corticosteroids and certain β-antagonists and cyclic nocturnal enteral or parenteral nutrition, plus lifestyle habits, including atypical eating times and chronic alcohol consumption, also can be causal of CD. Just as surprisingly are the many proven chronotherapeutic strategies available today to manage the CD of several of these medical conditions. In clinical medicine, CD seems to be a common, yet mostly unrecognized, pathologic mechanism of human disease as are the many effective chronotherapeutic interventions to remedy it.
-
This article describes the rationale, objectives, design and conduct of the ambulatory blood pressure monitoring (ABPM)-based Hygia Project. Given the substantial evidence of the significantly better prognostic value of ABPM compared to clinic BP measurements, several international guidelines now propose ABPM as a requirement to confirm the office diagnosis of hypertension. Nonetheless, all previous ABPM outcome investigations, except the Monitorización Ambulatoria para Predicción de Eventos Cardiovasculares study (MAPEC) study, relied upon only a single, low-reproducible 24 h ABPM assessment per participant done at study inclusion, thus precluding the opportunity to explore the potential reduction in cardiovascular disease (CVD) risk associated with modification of prognostic ABPM-derived parameters by hypertension therapy. ⋯ The primary CVD outcome end point is the composite of CVD death, myocardial infarction, coronary revascularization, heart failure, ischemic stroke and hemorrhagic stroke. The independent Hygia Project Events Committee periodically evaluates blinded clinical reports to ascertain and certify every documented event. Beyond the potential findings resulting from testing the main hypotheses, the Hygia Project has already demonstrated, as proof of concept, that the routine diagnosis of hypertension and individualized assessment of CVD and other risks by ABPM, as currently recommended, is fully viable in the primary care setting, where most people with either hypertension, dyslipidemia, type 2 diabetes or CKD receive routine medical attention.