Journal of applied physiology
-
Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). ⋯ RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.
-
Arterial blood pressure and heart rate responses to static contraction of the hindlimb muscles are greater in rats whose femoral arteries were previously ligated than in control rats. Also, the prior findings demonstrate that nerve growth factor (NGF) is increased in sensory neurons-dorsal root ganglion (DRG) neurons of occluded rats. However, the role for endogenous NGF in engagement of the augmented sympathetic and pressor responses to stimulation of mechanically and/or metabolically sensitive muscle afferent nerves during static contraction after femoral artery ligation has not been specifically determined. ⋯ The data showed that distribution of DRG neurons with different thin fiber phenotypes was not notably altered when NGF was infused into the hindlimb muscles. However, NGF increased expression of ASIC3 in DRG neurons with C-fiber but not A-fiber. Overall, these data suggest that 1) NGF is amplified in sensory nerves of occluded rats and contributes to augmented reflex sympathetic and blood pressure responses evoked by stimulation of chemically, but not mechanically, sensitive muscle afferent nerves and 2) NGF likely plays a role in modulating the muscle metaboreflex via enhancement of ASIC3 expression in C-fiber of DRG neurons.
-
Acute intermittent hypoxia (AIH) elicits a form of spinal respiratory plasticity known as phrenic long-term facilitation (pLTF). pLTF requires spinal serotonin receptor-2 activation, the synthesis of new brain-derived neurotrophic factor (BDNF), and the activation of its high-affinity receptor tyrosine kinase, TrkB. Spinal adenosine 2A receptor activation elicits a distinct pathway to phrenic motor facilitation (pMF); this BDNF synthesis-independent pathway instead requires new synthesis of an immature TrkB isoform. Since hypoxia increases extracellular adenosine levels, we tested the hypothesis that new synthesis of TrkB and BDNF contribute to AIH-induced pLTF. ⋯ Thus, AIH-induced pLTF requires MEK/ERK (not PI3K/AKT) signaling pathways. When U0126 was injected post-AIH, pLTF development was halted but not reversed, suggesting that ERK is critical for the development but not maintenance of pLTF. Thus, there are clear mechanistic distinctions between AIH-induced pLTF (i.e., BDNF synthesis and MEK/ERK dependent) versus adenosine 2A receptor-induced pMF (i.e., TrkB synthesis and PI3K/Akt dependent).
-
We sought to determine the influence of sympathoexcitation on dynamic cerebral autoregulation (CA), cerebrovascular reactivity, and ventilatory control in humans at high altitude (HA). At sea level (SL) and following 3-10 days at HA (5,050 m), we measured arterial blood gases, ventilation, arterial pressure, and middle cerebral blood velocity (MCAv) before and after combined α- and β-adrenergic blockade. Dynamic CA was quantified using transfer function analysis. ⋯ Despite elevations in MCAv reactivity to hypercapnia at HA, blockade reduced (P < 0.05) it comparably at SL and HA, effects we attributed to the hypotension and/or abolition of the hypercapnic-induced increase in MAP. With the exception of dynamic CA, we provide evidence of a redundant role of sympathetic nerve activity as a direct mechanism underlying changes in cerebrovascular reactivity and ventilatory control following partial acclimatization to HA. These findings have implications for our understanding of CBF function in the context of pathologies associated with sympathoexcitation and hypoxemia.
-
Randomized Controlled Trial
Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia.
Physical exertion is thought to exacerbate acute mountain sickness (AMS). In this prospective, randomized, crossover trial, we investigated whether moderate exercise worsens AMS in normobaric hypoxia (12% oxygen, equivalent to 4,500 m). Sixteen subjects were exposed to altitude twice: once with exercise [3 × 45 min within the first 4 h on a bicycle ergometer at 50% of their altitude-specific maximal workload (maximal oxygen uptake)], and once without. ⋯ After exercise, the increase in ventilation persisted for several hours and was associated with similar levels of capillary and cerebral oxygenation at the exercise and rest day. We conclude that moderate exercise at ~50% maximal oxygen uptake does not increase AMS in normobaric hypoxia. These data do not exclude that considerably higher exercise intensities exacerbate AMS.