Journal of applied physiology
-
Comparative Study
Dominant negative mutation of the TGF-beta receptor blocks hypoxia-induced pulmonary vascular remodeling.
The present study utilized a novel transgenic mouse model that expresses an inducible dominant negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII mouse) to test the hypothesis that TGF-beta signaling plays an important role in the pathogenesis of chronic hypoxia-induced increases in pulmonary arterial pressure and vascular and alveolar remodeling. Nine- to 10-wk-old male DnTGFbetaRII and control nontransgenic (NTG) mice were exposed to normobaric hypoxia (10% O2) or air for 6 wk. Expression of DnTGFbetaRII was induced by drinking 25 mM ZnSO4 water beginning 1 wk before hypoxic exposure. ⋯ Furthermore, the stimulatory effects of hypoxic exposure on pulmonary arterial and alveolar collagen content, appearance of alpha-smooth muscle actin-positive cells in alveolar parenchyma, and expression of extracellular matrix molecule (including collagen I and III, periostin, and osteopontin) mRNA in whole lung were abrogated in DnTGFbetaRII mice compared with NTG controls. Hypoxic exposure had no effect on systemic arterial pressure or heart rate in either strain. These data support the hypothesis that endogenous TGF-beta plays an important role in pulmonary vascular adaptation to chronic hypoxia and that disruption of TGF-beta signaling attenuates hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial hypertrophy and muscularization, alveolar remodeling, and expression of extracellular matrix mRNA in whole lung.
-
The pathogenesis of pulmonary hypertension in patients with chronic obstructive pulmonary disease is not understood. We have previously shown increased levels of mediators that control vasoconstriction (endothelin-1), vascular cell proliferation (endothelin-1 and vascular endothelial growth factor), and vasodilation (endothelial nitric oxide synthase) in the intrapulmonary arteries of animals exposed to cigarette smoke. To determine whether these mediators could be implicated in the structural remodeling of the arterial vasculature and increased pulmonary arterial pressure caused by chronic cigarette smoke exposure, guinea pigs were exposed to daily cigarette smoke for 6 mo. ⋯ Gene expression and protein levels of all three mediators were increased, and pulmonary arterial pressure correlated both with the levels of mediator production and with the degree of arterial muscularization. We conclude that chronic smoke exposure produces increased vasoactive mediator expression in the small intrapulmonary arteries and that these mediators are associated with vascular remodeling as well as increased pulmonary arterial pressure. These findings support the idea that hypertension in chronic obstructive pulmonary disease is a result of direct cigarette smoke-mediated effects on the vasculature and suggest that interference with endothelin and VEGF production and activity or augmentation of nitric oxide levels may be beneficial.
-
Comparative Study
Cardiovascular effects of epinephrine during rewarming from hypothermia in an intact animal model.
Rewarming from accidental hypothermia is often complicated by "rewarming shock," characterized by low cardiac output (CO) and a sudden fall in peripheral arterial pressure. In this study, we tested whether epinephrine (Epi) is able to prevent rewarming shock when given intravenously during rewarming from experimental hypothermia in doses tested to elevate CO and induce vasodilation, or lack of vasodilation, during normothermia. A rat model designed for circulatory studies during experimental hypothermia and rewarming was used. ⋯ Total peripheral resistance was significantly higher in group 5 during rewarming from 24 to 34 degrees C, compared with groups 4 and 6. This study shows that, in contrast to normothermic conditions, Epi infused during hypothermia induces vasoconstriction rather than vasodilation combined with lack of CO elevation. The apparent dissociation between myocardial and vascular responses to Epi at low temperatures may be related to hypothermia-induced myocardial failure and changes in temperature-dependent adrenoreceptor affinity.
-
Clinical Trial
Influence of arterial O2 on the susceptibility to posthyperventilation apnea during sleep.
To investigate the contribution of the peripheral chemoreceptors to the susceptibility to posthyperventilation apnea, we evaluated the time course and magnitude of hypocapnia required to produce apnea at different levels of peripheral chemoreceptor activation produced by exposure to three levels of inspired P(O2). We measured the apneic threshold and the apnea latency in nine normal sleeping subjects in response to augmented breaths during normoxia (room air), hypoxia (arterial O2 saturation = 78-80%), and hyperoxia (inspired O2 fraction = 50-52%). Pressure support mechanical ventilation in the assist mode was employed to introduce a single or multiple numbers of consecutive, sigh-like breaths to cause apnea. ⋯ Torr(-1); P < 0.05) compared with normoxia (0.79 +/- 0.05 l.min(-1). Torr(-1)). These findings indicate that posthyperventilation apnea is initiated by the peripheral chemoreceptors and that the varying susceptibility to apnea during hypoxia vs. hyperoxia is influenced by the relative activity of these receptors.
-
Clinical Trial
Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure.
The arterial pulse-wave transit time can be measured between the ECG R-wave and the finger pulse (rPTT), and has been shown previously to have a linear correlation with blood pressure (BP). We hypothesized that the relationship between rPTT, preejection period (PEP; the R-wave/mechanical cardiac delay), and BP would vary with different vasoactive drugs. Twelve healthy men (mean age 22 yr) were studied. ⋯ However, the relationship is not reliable enough for rPTT to be used as a surrogate marker of SBP, although it may be useful in assessing BP variability. DBP and MAP cannot be predicted from rPTT without correction for PEP. The significant contribution of PEP to rPTT means that rPTT should not be used as a marker of purely vascular function.