Journal of applied physiology
-
Comparative Study
NOS3 deficiency augments hypoxic pulmonary vasoconstriction and enhances systemic oxygenation during one-lung ventilation in mice.
Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial PO2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 +/- 39% vs. 109 +/- 36%, mean +/- SD; P < 0.05). ⋯ Inhibition of all three NOS isoforms with Nomega-nitro-L-arginine methyl ester (L-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 +/- 67% in L-NAME treated vs. 109 +/- 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by L-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.
-
Comparative Study
Activation of the vasoactive intestinal peptide 2 receptor modulates normal and atrophying skeletal muscle mass and force.
Of the two known vasoactive intestinal peptide receptors (VPAC1R and VPAC2R), the VPAC2R is expressed in skeletal muscle. To evaluate the function of the VPAC2R in the physiological control of skeletal muscle mass, we utilized the VPAC1R selective agonist [K15,R16,L27]VIP(1-7) GRF(8-27)-NH2 and the VPAC2R selective agonist Ro-25-1553 to treat mice and rats undergoing either nerve damage-, corticosteroid-, or disuse-induced skeletal muscle atrophy. These analyses demonstrated that activation of VPAC2R, but not VPAC1R, reduced the loss of skeletal muscle mass and force during conditions of skeletal muscle atrophy resulting from corticosteroid administration, denervation, casting-induced disuse, increased skeletal muscle mass, and force of nonatrophying muscles. These studies indicate that VPAC2R agonists may have utility for the treatment of skeletal muscle-wasting diseases.
-
Comparative Study
Resuscitation with lactated Ringer solution limits the expression of molecular events associated with lung injury after hemorrhage.
The aim of this study was to determine whether hemorrhage altered the caspase-3 activity and the ATP levels in rat lung and ileum tissues and determine whether resuscitation with lactated Ringer solution (LR) or whole blood (WB) reversed these changes. Male Sprague-Dawley rats were briefly anesthetized with isoflurane, and their mean arterial blood pressure was reduced from 110 to 40 mmHg by bleeding. The bled rat was then resuscitated with LR or autologous WB to bring mean arterial blood pressure back to 80 mmHg. ⋯ Similarly, hemorrhage increased the expression of inducible nitric oxide synthase and Kruppel-like factor 6 and decreased expression of Kruppel-like factor 4. Subsequent LR resuscitation normalized the expression of these genes in the lung tissue. Our results demonstrate that resuscitation with LR can reverse the expression of genes and their products that are thought to contribute to hemorrhage-induced lung injury.
-
Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electro- and pharmacomechanical mechanisms are involved in regulating pulmonary vasomotor tone, whereas intracellular Ca(2+) serves as an important signal in regulating contraction and proliferation of pulmonary artery smooth muscle cells. Herein, we provide a basic overview of the cellular mechanisms involved in the development of hypoxic pulmonary vasoconstriction. Our discussion focuses on the roles of ion channels permeable to K(+) and Ca(2+), membrane potential, and cytoplasmic Ca(2+) in the development of acute hypoxic pulmonary vasoconstriction and chronic hypoxia-mediated pulmonary vascular remodeling.
-
The purpose of the study was to quantify the influence of selected motor unit properties and patterns of activity on amplitude cancellation in the simulated surface electromyogram (EMG). The study involved computer simulations of a motor unit population with physiologically defined recruitment and rate coding characteristics that activated muscle fibers whose potentials were recorded on the skin over the muscle. Amplitude cancellation was quantified as the percent difference in signal amplitude when motor unit potentials were summed before and after rectification. ⋯ The most profound factors influencing amplitude cancellation were the number of active motor units and the duration of the action potentials. The effects of amplitude cancellation were minimal (<5%) when the EMG amplitude was normalized to maximal values, with the exception of variations in peak discharge rate and recruitment range, which resulted in differences up to 17% in the normalized EMG signal across conditions. These results indicate the amount of amplitude cancellation that can occur in various experimental conditions and its influence on absolute and relative measures of EMG amplitude.