Journal of applied physiology
-
The inherent electrical resistance of the rat vaginal wall rises markedly near the beginning of estrus and then falls again to low levels for the remainder of the ovarian cycle. Accordingly, special instruments have been developed to measure such resistances (within seconds) on simply inserting a small probe fitted with a pair of recording electrodes into the vagina (i.e., the MK-10A impedance checker and the EC40 estrus cycle monitor). As described herein, these two instruments are far more convenient for monitoring individual cycles than more laborious methods in which vaginal smears are inspected for changes in numbers of cornified (C), nucleated (N), and leukocytic (L) cells. ⋯ In rats from which vagina smears revealed cell numbers in the order of C > N > L (typical of early estrus) electrical resistances were high, 488 +/- 130 k Omega (18 rats). In rats from which vagina smears revealed all other possible cell distributions, electrical resistances (combined) were much lower (P < 0.05), 124 +/- 23 k Omega (32 rats). Thus readily accessible, inexpensive electrical meters may be useful in assessing the status of estrus in female rats, either to improve reproductive efficiencies and/or for other purposes involving experiments in which such information is desirable.
-
The effects of mechanical ventilation (MV) on the surfactant system and cytokine secretion were studied in isolated septic rat lungs. At 23 h after sham surgery or induction of sepsis by cecal ligation and perforation (CLP), lungs were excised and randomized to one of three groups: 1) a nonventilated group, 2) a group subjected to 1 h of noninjurious MV (tidal volume = 10 ml/kg, positive end-expiratory pressure = 3 cmH(2)O), or 3) a group subjected to 1 h of injurious MV (tidal volume = 20 ml/kg, positive end-expiratory pressure = 0 cmH(2)O). ⋯ In these lungs, the surfactant system was similar in sham and CLP lungs; however, tumor necrosis factor-alpha and interleukin-6 levels were significantly higher in CLP lungs. We conclude that injurious ventilation altered surfactant independent of sepsis and that the CLP lungs were predisposed to the secretion of larger amounts of cytokines because of ventilation.
-
Gravity-dependent changes of regional lung function were studied during normogravity, hypergravity, and microgravity induced by parabolic flights. Seven healthy subjects were followed in the right lateral and supine postures during tidal breathing, forced vital capacity, and slow expiratory vital capacity maneuvers. Regional 1) lung ventilation, 2) lung volumes, and 3) lung emptying behavior were studied in a transverse thoracic plane by functional electrical impedance tomography (EIT). ⋯ During tidal breathing, the differences in ventilation magnitudes between the right and left lung regions were not significant in either posture or gravity phase. A significant nonlinearity of lung emptying was determined at normogravity and hypergravity. The pattern of lung emptying was homogeneous during microgravity.
-
Ventilation-perfusion (VA/Q) inhomogeneity was modeled to measure its effect on arterial oxygenation during maintenance-phase anesthesia involving an inspired mixture of 30% O(2) and either N(2)O or N(2). A multialveolar compartment computer model was constructed based on a log normal distribution of VA/Q inhomogeneity. Increasing the log SD of the distribution of blood flow from 0 to 1.75 produced a progressive fall in arterial PO(2) (Pa(O(2))). ⋯ The improvement in Pa(O(2)) when N(2)O was present instead of N(2) was greatest when the degree of VA/Q inhomogeneity was in the range typically seen in anesthetized patients. Models based on distributions of expired and inspired alveolar ventilation give quantitatively different results for Pa(O(2)). In the presence of VA/Q inhomogeneity, second-gas and concentrating effects may have clinically significant effects on arterial oxygenation even at "steady-state" levels of N(2)O uptake.
-
Volatile anesthetics have multiple actions on intracellular Ca(2+) homeostasis, including activation of the ryanodine channel (RyR) and sensitization of this channel to agonists such as caffeine and ryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in many mammalian cells, and cADPR has been proposed to be a second messenger in many signaling pathways. I investigated the effect of volatile anesthetics on the cADPR signaling system, using sea urchin egg homogenates as a model of intracellular Ca(2+) stores. ⋯ The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to halothane. In contrast, all the volatile anesthetics used had no effect on the activity of the enzyme that synthesizes cADPR. I propose that the complex effect of volatile anesthetics on intracellular Ca(2+) homeostasis may involve modulation of the cADPR signaling system.