Journal of applied physiology
-
The main purpose of this study was to find out whether the dominant dorsal lung perfusion while supine changes to a dominant ventral lung perfusion while prone. Regional distribution of pulmonary blood flow was determined in 10 healthy volunteers. The subjects were studied in both prone and supine positions with and without lung distension caused by 10 cmH2O of continuous positive airway pressure (CPAP). ⋯ Diaphragmatic sections of the lung had a more uniform pulmonary blood flow distribution in the prone than supine position during both normal and CPAP breathing. It was concluded that the dominant dorsal lung perfusion observed when the subjects were supine was not changed into a dominant ventral lung perfusion when the subjects were prone. Lung perfusion was more uniformly distributed in the prone compared with in the supine position, a difference that was more marked during total lung distension (CPAP) than during normal breathing.
-
Maximal O2 delivery and O2 uptake (VO2) per 100 g of active muscle mass are far greater during knee extensor (KE) than during cycle exercise: 73 and 60 ml. min-1. 100 g-1 (2.4 kg of muscle) (R. S. Richardson, D. ⋯ Maximal work rate was affected by variations in inspired O2 (-25 and +14% at 0.12 and 1.0 FIO2, respectively, compared with normoxia, P < 0.05) as was maximal VO2 (VO2 max): 1.04 +/- 0.13, 1. 24 +/- 0.16, and 1.45 +/- 0.19 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Calculated mean capillary PO2 also varied with FIO2 (28.3 +/- 1.0, 34.8 +/- 2.0, and 40.7 +/- 1.9 Torr at 0.12, 0.21, and 1.0 FIO2, respectively, P < 0.05) and was proportionally related to changes in VO2 max, supporting our previous finding that a decrease in O2 supply will proportionately decrease muscle VO2 max. As even in the isolated quadriceps (where normoxic O2 delivery is the highest recorded in humans) an increase in O2 supply by hyperoxia allows the achievement of a greater VO2 max, we conclude that, in normoxic conditions of isolated KE exercise, KE VO2 max in trained subjects is not limited by mitochondrial metabolic rate but, rather, by O2 supply.
-
In this study we sought to determine the effect of sepsis on two sequelae of prolonged (24-h) beta-agonist administration, myocardial hypertrophy and catecholamine-induced cardiotoxicity. Sprague-Dawley rats were randomized to cecal ligation and perforation (CLP) or sham study groups and then further randomized to receive isoproterenol (2.4 mg. kg-1. day-1 iv) or placebo treatment. ⋯ We conclude that, in sepsis, beta-agonists induce changes in myocardial weight and function consistent with acute myocardial hypertrophy. These changes occur at the expense of significant tissue injury and increased sensitivity to ischemia-reperfusion-induced tissue injury.
-
Acute normovolemic hemodilution (ANH) is efficient in reducing allogenic blood transfusion needs during elective surgery. Tissue oxygenation is maintained by increased cardiac output and oxygen extraction and, presumably, a more homogeneous tissue perfusion. The aim of this study was to investigate blood flow distribution and oxygenation of skeletal muscle. ⋯ Nevertheless, tissue PO2 was preserved (27.4 +/- 1.3 vs. 29.9 +/- 1. 4 Torr). Heterogeneity of muscle perfusion (relative dispersion) was reduced after ANH (20.0 +/- 2.2 vs. 13.9 +/- 1.5%). We conclude that a more homogeneous distribution of perfusion is one mechanism for the preservation of tissue oxygenation after moderate ANH, despite reduced oxygen delivery.
-
Comparative Study
Infrared CO2 analyzer error: an effect of background gas (N2 and O2).
Three infrared CO2 analyzers were tested for the effect of background gases: the Ametek CD-3A (Ametek, Thermox Instruments Division, Pittsburgh, PA), the Dräger Multiwarn P CO2 (Dräger, L ubeck, Germany), and the Servomex 1440 (Servomex, Crowborough, East Sussex, UK). Various CO2 concentrations were prepared with Wösthoff precision pumps (H. Wösthoff, Bochum, Germany). ⋯ When the CO2 analyzers were calibrated with N2 as the background gas, the CO2 reading in an O2-enriched atmosphere was 8% lower than the true value. Conversely, calibration with O2 as the background gas resulted in a 10% overestimation of CO2 levels when N2 was the background gas. This error may be important in a few fields of respiratory physiology.