Journal of applied physiology
-
Randomized Controlled Trial Clinical Trial
Effect of sodium in a rehydration beverage when consumed as a fluid or meal.
To investigate the impact of fluid composition on rehydration effectiveness, 30 subjects (15 men and 15 women) were studied during 2 h of rehydration after a 2.5% body weight loss. In a randomized crossover design, subjects rehydrated with water (H2O), chicken broth (CB: 109.5 mmol/l Na, 25.3 mmol/l K), a carbohydrate-electrolyte drink (CE: 16.0 mmol/l Na, 3.3 mmol/l K), and chicken noodle soup (Soup: 333.8 mmol/l Na, 13.7 mmol/l K). Subjects ingested 175 ml at the start of rehydration and 20 min later; H2O was given every 20 min thereafter for a total volume equal to body weight loss during dehydration. ⋯ Urine osmolality was higher in the CB and Soup trials than in the CE trial. Urinary sodium concentration was higher in the Soup and CB trials than in the CE and H2O trials. These results provide evidence that the inclusion of sodium in rehydration beverages, as well as consumption of a sodium-containing liquid meal, increases fluid retention and improves plasma volume restoration.
-
Breathing at very low lung volumes might be affected by decreased expiratory airflow and air trapping. Our purpose was to detect expiratory flow limitation (EFL) and, as a consequence, intrinsic positive end-expiratory pressure (PEEPi) in grossly obese subjects (OS). Eight OS with a mean body mass index (BMI) of 44 +/- 5 kg/m2 and six age-matched normal-weight control subjects (CS) were studied in different body positions. ⋯ In OS, mean Pdi in each position was significantly larger compared with CS. Mean Pdi increased from 1.02 +/- 0.32 kPa in the upright position to 1.26 +/- 0.17 kPa in the supine position (not significant) and decreased to 1. 06 +/- 0.26 kPa in the right lateral position (P < 0.05, compared with supine), whereas there were no significant changes in CS. We conclude that in OS 1) tidal breathing can be affected by EFL and PEEPi; 2) EFL and PEEPi are promoted by the supine posture; and 3) the increased diaphragmatic load in the supine position is, in part, related to PEEPi.
-
Clinical Trial
Pulse pressure response to the strain of the valsalva maneuver in humans with preserved systolic function.
Arterial pulse pressure response during the strain phase of the Valsalva maneuver has been proposed as a clinical tool for the diagnosis of left heart failure, whereas responses of subjects with preserved systolic function have been poorly documented. We studied the relationship between the aortic pulse amplitude ratio (i.e., minimum/maximum pulse pressure) during the strain phase of the Valsalva maneuver and cardiac hemodynamics at baseline in 20 adults (42 +/- 14 yr) undergoing routine right and left heart catheterization. They were normal subjects (n = 5) and patients with various forms of cardiac diseases (n = 15), and all had a left ventricular ejection fraction >/=40%. ⋯ Aortic pulse amplitude ratio 1) did not correlate with baseline left ventricular end-diastolic pressure, cardiac index (thermodilution), or left ventricular ejection fraction (cineangiography) and 2) was positively related to total arterial compliance (area method) (r = 0.59) and to basal mean right atrial pressure (r = 0.57) (each P < 0.01). Aortic pulse pressure responses to the strain were not related to heart rate responses during the maneuver. In subjects with preserved systolic function, the aortic pulse amplitude ratio during the strain phase of the Valsalva maneuver relates to baseline total arterial compliance and right heart filling pressures but not to left ventricular function.
-
We tested the hypotheses that, in hypoxic young pigs, reductions in cardiac output restrict systemic oxygen transport to a greater extent than does hypoxia alone and that compensatory responses to this restriction are more effective in higher than in lower priority vasculatures. To study this, 10- to 14-day-old instrumented awake hypoxic (arterial oxygen tension = 39 Torr) pigs were exposed to reduced venous return by inflation of a right atrial balloon-tipped catheter. Blood flow was measured with radionuclide-labeled microspheres, and oxygen metabolism was determined with arterial and venous oxygen contents from appropriate vessels. ⋯ During hypoxia, decreasing venous return was associated with increases in arterial lactic acid concentration and central venous pressure; attenuation of the hypoxia-related increase in cardiac output; sustained increases in brain (72% over baseline) and heart perfusion; reductions in lung (bronchial artery), pancreatic, renal, splenic, and intestinal (-50% below baseline) perfusion; decreases in systemic and gastrointestinal oxygen delivery; sustained increases in systemic and intestinal oxygen extraction; and decreases in intestinal oxygen uptake, without changes in cerebral oxygen metabolism. We conclude that when venous return to the heart is reduced in hypoxic young pigs, the hypoxia-related increase in cardiac output was attenuated and the relative reduction in cardiac output was associated with preserved cerebral oxygen uptake and compromised intestinal oxygen uptake. Regional responses to hypoxia combined with relative reductions in cardiac output differ from that of hypoxia alone, with the greatest effects on lower priority organs such as the gastrointestinal tract.
-
Early in spaceflight, an apparently paradoxical condition occurs in which, despite an externally visible headward fluid shift, measured central venous pressure is lower but stroke volume and cardiac output are higher, and heart rate is unchanged from reference measurements made before flight. This paper presents a set of studies in which a simple three-compartment, steady-state model of cardiovascular function is used, providing insight into the contributions made by the major mechanisms that could be responsible for these events. ⋯ This leads to a decrease in intrapleural pressure, ultimately causing a shift of blood into the vessels of the chest, increasing the transmural filling pressure of the heart, and decreasing the central venous pressure. The increase in the transmural filling pressure of the heart is responsible, through a Starling-type mechanism, for the observed increases in heart size, left ventricular end-diastolic volume, stroke volume, and cardiac output.