Journal of applied physiology
-
We assessed in eight dogs the accuracy with which electrical impedance tomography (EIT) can monitor changes in lung volume by comparing the changes in mean lung conductivity obtained with EIT to changes in esophageal pressure (Pes) and to airway opening pressure (Pao) measured after airway occlusion. The average volume measurement errors were determined: 26 ml for EIT; 35 ml for Pao; and 54 ml for Pes. Subsequently, lung inflation due to applied positive end-expiratory pressure was measured by EIT (delta VEIT) and Pao (delta VPAO) under both inflation and deflation conditions. ⋯ The average differences between EIT estimates and delta VEIT,occl were 5.8 +/- 44 ml for delta VEIT,vent and 49.5 +/- 34 ml for delta VEIT,occl. The average volume increase for all dogs was 442.2 ml. These results show that EIT can provide usefully accurate estimates of changes in lung volume over an extended time period and that the technique has promise as a means of conveniently and noninvasively monitoring lung hyperinflation.
-
Clinical Trial
Hypoxic ventilatory sensitivity in men is not reduced by prolonged hyperoxia (Predictive Studies V and VI).
Potential adverse effects on the O2-sensing function of the carotid body when its cells are exposed to toxic O2 pressures were assessed during investigations of human organ tolerance to prolonged continuous and intermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxic ventilatory responses (HVR) were determined at 1.0 ATA before and after severe hyperoxic exposures: 1) continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and 2) intermittent O2 breathing at 2.0 ATA (30 min O2-30 min normoxia) for 14.3 O2 h within 30-h total time. ⋯ In humans, prolonged hyperoxia does not attenuate the hypoxia-sensing function of the peripheral chemoreceptors, even after exposures that approach limits of human pulmonary and central nervous system O2 tolerance. Current applications of hyperoxia in hyperbaric O2 therapy and in subsea- and aerospace-related operations are guided by and are well within these exposure limits.
-
We used proportional assist ventilation (PAV) to evaluate the sources of respiratory drive during sleep. PAV increases the slope of the relation between tidal volume (VT) and respiratory muscle pressure output (Pmus). We reasoned that if respiratory drive is dominated by chemical factors, progressive increase of PAV gain should result in only a small increase in VT because Pmus would be downregulated substantially as a result of small decreases in PCO2. ⋯ There was no difference in response between REM and non-REM sleep. We conclude that respiratory drive during sleep is dominated by chemical control and that there is no fundamental difference between REM and non-REM sleep in this regard. REM sleep appears to simply add bidirectional noise to what is basically a chemically controlled respiratory output.
-
Clinical Trial Controlled Clinical Trial
Inhibition of shivering increases core temperature afterdrop and attenuates rewarming in hypothermic humans.
During severe hypothermia, shivering is absent. To simulate severe hypothermia, shivering in eight mildly hypothermic subjects was inhibited with meperidine (1.5 mg/kg). Subjects were cooled twice (meperidine and control trials) in 8 degrees C water to a core temperature of 35.9 +/- 0.5 (SD) degrees C, dried, and then placed in sleeping bags. ⋯ This was likely due to the increased thermoregulatory drive with the greater afterdrop and the short half-life of meperidine. These results demonstrate the effectiveness of shivering heat production in attenuating the postcooling afterdrop of core temperature and potentiating core rewarming. The meperidine protocol may be valuable for comparing the efficacy of various hypothermia rewarming methods in the absence of shivering.
-
A dual direct/indirect room-sized calorimeter is used at the Beltsville Human Nutrition Research Center to measure heat emission and energy expenditure in humans. Because the response times of a gradient layer direct calorimeter and an indirect calorimeter are not equivalent, the respective rate of heat emission and energy expenditure cannot be directly compared. A system of equations has been developed and tested that can correct the respective outputs of the direct gradient layer calorimeter and indirect calorimeter for delays due to the response times of the measurement systems. ⋯ However, heat emission measured during sleep was significantly greater (14%) than energy expenditure, suggesting a change in the energy stored as heat in the body. This difference was reversed during the day. These results illustrate how the simultaneous measurement of heat emission and energy expenditure provides insights into heat regulation.