Journal of applied physiology
-
Recent studies suggest that arousal is the dominant factor acutely increasing blood pressure in obstructive sleep apnea and that neither stimulation of chemoreceptors nor mechanical factors associated with large negative swings in intrapleural pressure substantially contribute to the rise in blood pressure associated with each obstructive apneic event. A canine model of obstructive sleep apnea was used to examine the relative contributions of these mechanisms in the blood pressure response to induced airway obstruction during non-rapid-eye-movement sleep. In part A of the study, the arousal response was eliminated from an obstructive event by restoring airway patency just before the expected arousal, allowing blood pressure responses to be compared between obstructive events with and without arousal. ⋯ In comparison, when arousal was allowed to occur, MAP increased by a further 11.8 +/- 1.2 mmHg (P < 0.01). In part B (n = 3 dogs), there was no change in MAP during the obstructive apneic event, and MAP fell by > 10 mmHg in the postobstruction period whether or not arousal occurred (P < 0.05). We conclude that neural reflexes, but not mechanical factors, substantially contribute to the acute blood pressure response to an obstructive apneic event and that arousal produces a separate, additional acute hypertensive response.
-
The effects of hypoglycemia on sweating, skin blood perfusion, and shivering responses were investigated in 10 healthy male volunteers. They exercised on an underwater cycle ergometer while immersed to the neck in 28 degrees C water for 20 min at 50% of their maximal work rate. The exercise-induced elevation in esophageal temperature (T(es)) initiated the sweating response (Esw) and increased skin blood perfusion (SkBP) as measured at the forehead. ⋯ Whereas the exercise delta T(es) response was unaffected by hypoglycemia, the decrease in T(es) was greater (P < or = 0.005) during the hypoglycemic than during the euglycemic condition. Hypoglycemia did not alter the delta T(es) threshold for cessation of sweating and passive vasodilation but reduced (P < or = 0.001) the delta T(es) threshold for onset of shivering (from -0.09 +/- 0.07 degrees C in the euglycemic condition to -0.65 +/- 0.12 degrees C in the hypoglycemic condition). The present results indicate that hypoglycemia (2.8 mM) does not affect the delta T(es) threshold for cessation of thermoregulatory sweating or the threshold for passive vasodilation during recovery from exercise-induced moderate heat stress but that it decreases the core temperature threshold for shivering during cold exposure.
-
Clinical Trial
Response of ventilator-dependent patients to different levels of proportional assist.
Proportional-assist ventilation (PAV) is a form of ventilatory support in which airway pressure increases in proportion to patient effort. Because it effectively reduces the mechanical load to an adjustable extent, PAV permits the study of the pattern of breathing in patients with respiratory disease when unconstrained by abnormal respiratory mechanics. We studied 11 patients with assorted medical problems requiring ventilatory support. ⋯ The correlation between VT and VE at the highest assist was very high (r = 0.91), suggesting that ventilatory demand is the most important determinant of VT variability. There were no systematic changes in breathing pattern as the level of assist was altered; at the highest and lowest levels of support, VE, VT, and f were, respectively, 12.8 +/- 5.4 (SD) vs. 11.6 +/- 4.3 l/min, 517 +/- 217 vs. 459 +/- 175 ml, and 25.0 +/- 4.2 vs. 25.7 +/- 3.9 breaths/min. These results indicate that within each patient, in a given state, there exist unique values for a desired VE, VT, and f that are largely independent of the mechanical load; if assist is increased, patient effort is decreased to maintain the desired ventilatory targets.
-
Clinical Trial
Contribution of PO2, P50, and Hb to changes in arteriovenous O2 content during exercise in heart failure.
Arteriovenous O2 content (a-vCO2) differences increase during exercise in normal subjects through several mechanisms including PO2, O2 pressure at which hemoglobin (Hb) is half saturated with O2 (P50), and Hb concentration changes. The present study was undertaken to evaluate how much these biochemical changes are relevant to a-vCO2 difference through exercise in patients with heart failure. Twenty-seven patients with congestive heart failure [10 patients in functional class A (peak exercise O2 uptake >20 ml x kg-1 x min-1), 9 in class B (20-15 ml x kg-1 x min-1), and 8 in class C (15-10 ml x kg-1 x min-1)] underwent a cardiopulmonary exercise test with once-per-minute simultaneous blood sampling from the pulmonary and systemic arteries for determination of Hb, PO2, PCO2, pH, O2 content (CO2), Hb saturation and lactic acid (pulmonary artery only), and calculation of P50. ⋯ Thus a-vCO2 difference increase during exercise is notable in patients with heart failure but unrelated to the severity of the syndrome. Hb, P50, and, to the greatest degree, PO2 changes participate in the increment of a-vCO2 difference. In class C patients, the lack of PO2 reduction in the second half of exercise suggests the achievement of a "whole body critical venous PO2."
-
Clinical Trial
Effort and volume dependence of forced-deflation flow-volume relationships in intubated infants.
The application of negative pressure to the airway opening [called the forced-deflation (FD) technique] allows the examination of maximal expiratory flow-volume curves in intubated infants who are unable to generate a voluntary maximal expiratory maneuver. We explored the questions of effort and volume dependence of flows generated by FD in 18 intubated, sedated, and paralyzed infants [age 10.6 +/- 2.0 (SE) mo; weight 7.2 +/- 0.7 kg] with normal lungs. Effort dependence was assessed by isovolume pressure-flow curves that were constructed in 10 infants from repeated FD maneuvers from total lung capacity (defined as +40 cmH2O) by varying airway opening pressures from 0 (barometric pressure) to -100 cmH2O at intervals of 20 cmH2O. ⋯ We found no significant influence of volume history on maximal flows at and below 25% FVC. Under well-controlled study conditions, we demonstrated excellent reproducibility of maximal expiratory flows at low lung volumes, analogous to those of voluntary forced expiratory maneuvers in adults and older children. This information may be helpful in setting standards for performance and interpretation of FD maneuvers in intubated infants.