Journal of applied physiology
-
Comparative Study
A comparison of changes in esophageal pressure and regional juxtacardiac pressures.
The relationship between esophageal pressure and juxtacardiac pressures was studied during positive end-expiratory pressure (PEEP) ventilation applied to both lungs or selectively to one lung. The experiments were performed in eight anesthetized dogs with balloon catheters in the esophagus and in the left and right pericardial and overlying pleural cavities and with an open-ended liquid-filled catheter in the pleural cavity. Bilateral PEEP (10, 20, and 30 cmH2O) caused progressive and similar increments in left and right pleural pressure. ⋯ In conclusion, selective PEEP caused nonuniform increments in regional pleural balloon pressure. Left and right pericardial balloon pressure, however, increased uniformly with selective PEEP because of reduced ipsilateral pericardial transmural pressure. The esophageal balloon did not reflect the marked regional increments in pleural balloon pressure with selective PEEP and consistently underestimated the changes in pleural balloon pressure with general PEEP.
-
Our objectives were to determine 1) the effects of increased respiratory dead space (VD) on the ventilatory response to exercise and 2) whether changes in the ventilatory response are due to changes in chemoreceptor feedback (rest to exercise) vs. changes in the feedforward exercise stimulus. Steady-state ventilation (VI) and arterial blood gas responses to mild or moderate hyperoxic exercise in goats were compared with and without increased VD. Responses were compared using a simple mathematical model with the following assumptions: 1) steady state, 2) linear CO2 chemoreceptor feedback, 3) linear feedforward exercise stimulus proportional to CO2 production (VCO2) and characterized by an exercise gain (Gex), and 4) additive exercise stimulus and CO2 feedback producing the system gain (Gsys = delta VI/delta VCO2). ⋯ Thus, Gex is increased by VD through a limited range. In goats, increases in Gsys with increased VD result from increases in both Gex and CO2 chemoreceptor feedback. These results are consistent with other experimental treatments that increase the exercise ventilatory response, maintaining constant relative PaCO2 regulation, and suggest that a common mechanism linked to resting ventilatory drive modulates Gex.
-
We studied waking and genioglossus electromyographic (EMGgg) responses to oscillating pressure waves applied to the upper airways of three sleeping dogs. The dogs were previously prepared with a permanent side-hole tracheal stoma and were trained to sleep with a tight-fitting snout mask, hermetically sealed in place, while breathing through a cuffed endotracheal tube inserted through the tracheostomy. Sleep state was determined by behavioral, electroencephalographic, and electromyographic criteria, and EMGgg activity was measured using fine bipolar electrodes inserted directly into the muscle. ⋯ Second, it produced an immediate and sustained augmentation of EMGgg, in wakefulness, SWS, and REM sleep. We conclude that oscillatory pressure waves in the upper airway, as found in snoring, produce reflex responses that help maintain upper airway patency during sleep. Loss of this type of reflex might contribute to the onset of obstructive sleep apnea in chronic snorers.
-
Comparative Study
A comparison of indirect methods for continuous estimation of arterial PCO2 in men.
Four different measures (PETCO2, PACO2, PADCO2, and PJCO2) for indirectly estimating arterial PCO2 (PaCO2) from respired gas at the mouth have been investigated. PETCO2 was the end-tidal PCO2. PACO2 was calculated using a reconstruction of the alveolar oscillation of PCO2 obtained from the end-tidal "plateau" in PCO2. ⋯ Arterial samples were drawn for determination of true PaCO2. The differences for each method between estimated and true PaCO2 at rest and at 50 and 100 W were as follows: PETCO2, -1.35 +/- 2.64, 1.67 +/- 2.31, and 2.67 +/- 2.02 (SD) Torr; PaCO2, -2.15 +/- 2.73, -0.80 +/- 2.18, and -0.35 +/- 2.31 (SD) Torr; PADCO2, -1.55 +/- 2.54, 0.25 +/- 2.16, and 0.63 +/- 2.26 (SD) Torr; and PJCO2, -1.41 +/- 2.30, 0.12 +/- 1.79, and 0.08 +/- 1.96 (SD) Torr. It is concluded that, at rest, all methods significantly underestimate true PaCO2 and during exercise PETCO2 significantly overestimates PaCO2, but no bias was detected for any of the other methods.
-
Serotonin2 (5-HT2) receptor antagonists (ketanserin, ritanserin) can normalize a hyperoxemia-induced disturbance in skeletal muscle oxygenation, presumably by local microflow changes. The purpose of this study was to develop equipment for local hydrogen clearance measurements with a modified eight-channel platinum electrode to assess changes in local skeletal muscle capillary blood flow induced by hyperoxemia and ritanserin (0.035 mg/kg) during hyperoxemia. Laser-Doppler flowmetry was used for regional microflow measurements. ⋯ In group II, ritanserin induced a 125% mean local hydrogen clearance increase compared with hyperoxemia (or 37% compared with group I normoxemia); laser-Doppler flowmetry signal increased 30%. The sum distribution of local hydrogen clearances shifted to the left during hyperoxemia and to the right after ritanserin. The conclusion from this study is that local and regional microflow changes can explain the effects of hyperoxemia and ritanserin on skeletal muscle oxygenation.