Journal of applied physiology
-
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. ⋯ During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.
-
Mean airway pressure underestimates mean alveolar pressure during high-frequency oscillatory ventilation. We hypothesized that high inspiratory flows characteristic of high-frequency jet ventilation may generate greater inspiratory than expiratory pressure losses in the airways, thereby causing mean airway pressure to overestimate, rather than underestimate, mean alveolar pressure. To test this hypothesis, we ventilated anesthetized paralyzed rabbits with a jet ventilator at frequencies of 5, 10, and 15 Hz, constant inspiratory-to-expiratory time ratio of 0.5 and mean airway pressures of 5 and 10 cmH2O. ⋯ We attribute this finding primarily to the combined effect of nonlinear pressure frictional losses in the airways and higher inspiratory than expiratory flows. Despite the nonlinearity of the pressure-flow relationship, inspiratory and expiratory net pressure losses decreased with respect to mean inspiratory and expiratory flows at the higher rates, suggesting rate dependence of flow distribution. Redistribution of tidal volume to a shunt airway compliance is thought to occur at high frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)
-
Nutritional intake plays an important role in determining metabolic and respiratory demands during both rest and exercise. This study examines the effects in normal subjects of 4 days of semistarvation with 440 kcal/day of intravenously infused dextrose followed by the infusion of 480 kcal/day of amino acids for 48 h on the metabolic and ventilatory response to exercise (1.25, 2.50, and 5.0 kg . m/s.). After 4 days of the dextrose infusion, arterial PCO2 (P less than 0.05), and the ventilatory equivalent for CO2 (VE/VCO2, P less than 0.05) were decreased at rest compared with control measurements made prior to the dextrose infusion. ⋯ During low levels of exercise, compared with the values obtained following the 4 days of dextrose infusion, there were larger increases in VE and VO2, whereas VCO2 changed little. Mechanical efficiency (kcal work/kcal energy utilized) during exercise increased after 4 days of dextrose and returned to near control levels with the amino acid infusion. The adaptive response characteristic of semistarvation with dextrose appears to be altered when isocaloric amounts of amino acids are subsequently administered for short periods.
-
Comparative Study
Description and validation of an ECG removal procedure for EMGdi power spectrum analysis.
We describe a cross-correlation procedure for removing contaminating electrocardiogram (ECG) complexes from the diaphragmatic electromyogram (EMGdi). First, the operator selects ECG templates from the EMGdi signal during expiratory intervals. Second, these templates are used to locate ECG complexes occurring during inspiratory EMGdi activity. ⋯ Finally, the modified template is subtracted from the EMGdi signal. To evaluate our method, we compared the power spectral density (PSD) obtained from processing EMGdi signals by our method with those obtained from the EMGdi signal in which ECG complexes had been removed by gating. Our results indicate that PSD obtained by these two different methods shows no statistically significant differences with respect to the following features: centroid frequency, median frequency, total power, standard deviation, skewness, and kurtosis.
-
The amount of urea produced in 60 min, [urea]t = 60, from intact guinea pig hepatocytes incubated in NH4Cl, oleate, lactate, NaHCO3, and ornithine at 37 degrees C at pH 7.1 is decreased by ethoxzolamide (EZ): Ki,EZ [urea]t = 60 +/- SD at 37 degrees C, pH 7.1 is 0.14 +/- 0.11 mM (10 Dixon plots). This value is in the same range as Ki,EZ for carbonic anhydrase (CA) activity of disrupted hepatocytes at 37 degrees C: 0.08 +/- 0.06 mM (2). [Urea]t = 60 is pH dependent whether external CO2 is supplied (25 mM HCO-3, 95% O2-5% CO2 and 5 mM HCO-3, 99% O2-1% CO2) or not [20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), 100% O2]. Ki,EZ [urea]t = 60 is independent of both external pH and external total CO2. ⋯ This value was approximately 3,000-fold lower than the Ki,EZ [urea]t = 60 for intact hepatocytes or Ki,EZ (CA) for disrupted hepatocytes. These results support the general hypothesis that mitochondrial CA is involved in urea synthesis by intact hepatocytes and that cytosolic components raise the experimentally determined Ki,EZ [urea]t = 60. We also conclude that the value of Ki,EZ [urea]t = 60 is independent of the availability of the substrate HCO-3 from external sources.