Journal of applied physiology
-
Bed rest and physical inactivity are the consequences of hospital admission for many patients. Physical inactivity induces changes in glucose metabolism, but its effect on the incretin effect, which is reduced in, e.g., Type 2 diabetes, is unknown. To investigate how 8 days of strict bed rest affects the incretin effect, 10 healthy nonobese male volunteers underwent 8 days of strict bed rest. ⋯ Concentrations of glucose, insulin, C-peptide, and GIP measured during the OGTT were higher after the bed rest intervention (all P < 0.05), whereas there was no difference in the levels of GLP-1 and Glucagon. Bed rest led to a mean loss of 2.4 kg of fat-free mass, and induced insulin resistance evaluated by the Matsuda index, but did not affect the incretin effect (P = 0.6). In conclusion, 8 days of bed rest induces insulin resistance, but we did not see evidence of an associated change in the incretin effect.
-
Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular mortality, and apnea-induced intermittent hypoxia (IH) is known to promote various cardiovascular alterations such as vascular remodeling. However, the mechanisms that underlie IH remain incompletely investigated. We previously demonstrated that the hypoxia-inducible factor-1 (HIF-1) and endothelin-1 (ET-1) are involved in arterial hypertension and myocardial susceptibility to infarction induced by IH. ⋯ This was accompanied by an increase in IMT. These modifications were prevented in HIF-1α(+/-) and bosentan-treated mice. The results of this study suggest that ET-1 is a major contributor to the vascular inflammatory remodeling induced by OSA-related IH, probably through HIF-1-dependent activation of NF-κB.
-
Inspiratory stretch by mechanical ventilation worsens lung injury. However, it is not clear whether and how the ventilator damages lungs in the absence of preexisting injury. We hypothesized that subtle loss of lung aeration during general anesthesia regionally augments ventilation and distension of ventilated air spaces. ⋯ CT scans documented 10% loss of whole-lung aeration and increased density in the dorsal lung, but no macroscopic atelectasis. Loss of pulmonary gas at ZEEP increased fractional ventilation and inspiratory dimensions of ventilated peripheral air spaces. Such regional changes could help explain a propensity for mechanical ventilation to contribute to lung injury in previously uninjured lungs.
-
The rotator cuff (RTC) muscles not only generate movement but also provide important shoulder joint stability. RTC tears, particularly in the supraspinatus muscle, are a common clinical problem. Despite some biological healing after RTC repair, persistent problems include poor functional outcomes with high retear rates after surgical repair. ⋯ However, information regarding normal supraspinatus size and contractile function is scarce. Animal models provide the means to compare muscle histology, imaging, and contractility within individual muscles in various models of injury and disease, but to date, most testing of animal contractile force has been limited primarily to hindlimb muscles. Here, we describe an in vivo method to assess contractility of the supraspinatus muscle and describe differences in methods and representative outcomes for mouse, rat, and rabbit.
-
Cervical spinal cord injury (SCI) can dramatically impair diaphragm muscle function and often necessitates mechanical ventilation (MV) to maintain adequate pulmonary gas exchange. MV is a life-saving intervention. However, prolonged MV results in atrophy and impaired function of the diaphragm. ⋯ Our results demonstrate that compared with either condition alone, the combination of SCI and MV resulted in increased diaphragm atrophy, contractile dysfunction, and expression of atrophy-related genes, including MuRF1. Importantly, administration of the antioxidant Trolox attenuated proteolytic activation, fiber atrophy, and contractile dysfunction in the diaphragms of SCI + MV animals. These findings provide evidence that cervical SCI greatly exacerbates VIDD, but antioxidant therapy with Trolox can preserve diaphragm contractile function following acute SCI.