Journal of applied physiology
-
The role of angiogenesis factors in skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is unknown. The first objective of this study was to assess various pro- and antiangiogenic factor and receptor expressions in the vastus lateralis muscles of control subjects and COPD patients. Preliminary inquiries revealed that angiopoietin-2 (ANGPT2) is overexpressed in limb muscles of COPD patients. ⋯ Immunoblotting confirmed that ANGPT2 protein levels were significantly greater in muscles of COPD patients compared with control subjects. ANGPT2 expression was induced by interferon-γ and -β and by hydrogen peroxide, but not by tumor necrosis factor. We conclude that upregulation of ANGPT2 expression in vastus lateralis muscles of COPD patients is likely due to oxidative stress and represents a positive adaptive response aimed at facilitating myogenesis and angiogenesis.
-
A profound remodeling of the diaphragm and vastus lateralis (VL) occurs in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). In this mini-review, we discuss the following costal diaphragm remodeling features noted in patients with moderate-to-severe COPD: 1) deletion of serial sarcomeres, 2) increased proportion of slow-twitch fibers, 3) fast-to-slow isoform shift in sarco(endo)plasmic reticulum Ca(2+)-ATPase, 4) increased capacity of oxidative metabolism, 5) oxidative stress, and 6) myofiber atrophy. ⋯ For each of the remodeling features noted in both the VL and costal diaphragm of COPD patients, we present mechanisms that are currently thought to mediate these changes as well as the pathophysiology of each remodeling feature. We hope that our mechanistic presentation stimulates research in this area that focuses on improving the ability of COPD patients to carry out increased activities of daily living.
-
Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by parenchymal damage and irreversible airflow limitation. In addition to lung dysfunction, patients with COPD develop weight loss, malnutrition, poor exercise performance, and skeletal muscle atrophy. The latter has been attributed to an imbalance between muscle protein synthesis and protein degradation. ⋯ Pilot experiments on vastus lateralis muscle samples suggest that the autophagy-lysosome system is induced in COPD patients compared with control subjects. In this review, we summarize recent progress related to molecular structure, regulation, and roles of the autophagy-lysosome pathway in normal and diseased skeletal muscles. We also speculate about regulation and functional importance of this system in skeletal muscle dysfunction in COPD patients.
-
Editorial Comment
Rebuilding the lung: signals for a complex architectural task.
-
Randomized Controlled Trial Comparative Study
Mechanisms of nasal high flow on ventilation during wakefulness and sleep.
Nasal high flow (NHF) has been shown to increase expiratory pressure and reduce respiratory rate but the mechanisms involved remain unclear. Ten healthy participants [age, 22 ± 2 yr; body mass index (BMI), 24 ± 2 kg/m(2)] were recruited to determine ventilatory responses to NHF of air at 37°C and fully saturated with water. We conducted a randomized, controlled, cross-over study consisting of four separate ∼60-min visits, each 1 wk apart, to determine the effect of NHF on ventilation during wakefulness (NHF at 0, 15, 30, and 45 liters/min) and sleep (NHF at 0, 15, and 30 liters/min). ⋯ In the nasal cavity model, NHF increased expiratory but decreased inspiratory resistance depending on both the cannula size and the expiratory flow rate. The mechanisms of action for NHF differ from those of CPAP and are sleep/wake-state dependent. NHF may be utilized to increase tidal breathing during wakefulness and to relieve respiratory loads during sleep.