Journal of applied physiology
-
The potential benefit of 100 vol% normobaric oxygen (NBO) for the treatment of acute ischemic stroke patients is still a matter of debate. To advance this critical question, we studied the effects of intraischemic normobaric oxygen alone or in combination with recombinant tissue-plasminogen activator (rtPA) on cerebral blood flow and ischemic brain damage and swelling in a clinically relevant rat model of thromboembolic stroke. ⋯ In contrast, combined NBO and rtPA has no neuroprotective effect on ischemic brain damage despite producing cerebral blood flow restoration. These results 1) by providing a new mechanism of action of NBO highlight together with previous findings the way by which intraischemic NBO shows beneficial action; 2) suggest that NBO could be an efficient primary care therapeutic intervention for patients eligible for rtPA therapy; 3) indicate that NBO could be an interesting alternative for patients not eligible for rtPA therapy; and 4) caution the use of NBO in combination with rtPA in acute stroke patients.
-
Randomized Controlled Trial
A somatostatin analog improves tilt table tolerance by decreasing splanchnic vascular conductance.
Splanchnic hemodynamics and tilt table tolerance were assessed after an infusion of placebo or octreotide acetate, a somatostatin analog whose vascular effects are largely confined to the splanchnic circulation. We hypothesized that reductions in splanchnic blood flow (SpBF) and splanchnic vascular conductance (SpVC) would be related to improvements in tilt table tolerance. In randomized, double-blind, crossover trials, hemodynamic variables were collected in 14 women and 16 men during baseline, 70° head-up tilt (HUT), and recovery. ⋯ A significant relationship existed between change (Δ) in SpBF (placebo-octreotide) and Δtilt time in women (Δtilt time = 2.5-0.0083 ΔSpBF, P < 0.01), but not men (Δtilt time = 3.41-0.0008 ΔSpBF, P = 0.59). In conclusion, administration of octreotide acetate improved tilt table tolerance, which was associated with a decrease in SpVC. In women, but not men, the magnitude of reduction in SpBF was positively associated with improvements in tilt tolerance.
-
Randomized Controlled Trial Comparative Study
Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics.
The onset of nonpulsatile cardiopulmonary bypass is known to deteriorate microcirculatory perfusion, but it has never been investigated whether this may be prevented by restoration of pulsatility during extracorporeal circulation. We therefore investigated the distinct effects of nonpulsatile and pulsatile flow on microcirculatory perfusion during on-pump cardiac surgery. Patients undergoing coronary artery bypass graft surgery were randomized into a nonpulsatile (n = 17) or pulsatile (n = 16) cardiopulmonary bypass group. ⋯ Pulsatile flow was not associated with augmentation of free hemoglobin production and was paralleled by improved oxygen consumption from 70 ± 14 to 82 ± 16 ml·min(-1)·m(-2) (P = 0.01) at the end of aortic cross-clamping. In conclusion, pulsatile cardiopulmonary bypass preserves microcirculatory perfusion throughout the early postoperative period, irrespective of systemic hemodynamics. This observation is paralleled by an increase in oxygen consumption during pulsatile flow, which may hint toward decreased microcirculatory heterogeneity during extracorporeal circulation and preservation of microcirculatory perfusion throughout the perioperative period.
-
Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. ⋯ After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.
-
Little is known about the role of Ca(2+) in central chemosensitive signaling. We use electrophysiology to examine the chemosensitive responses of tetrodotoxin (TTX)-insensitive oscillations and spikes in neurons of the locus ceruleus (LC), a chemosensitive region involved in respiratory control. We show that both TTX-insensitive spikes and oscillations in LC neurons are sensitive to L-type Ca(2+) channel inhibition and are activated by increased CO(2)/H(+). ⋯ Finally, both the appearance and frequency of TTX-insensitive spikes and oscillations increase over postnatal ages day 3-16. Our data suggest that 1) L-type Ca(2+) currents in LC neurons arise from channel populations that reside in different regions of the neuron, 2) these L-type Ca(2+) currents undergo significant postnatal development, and 3) the activity of these L-type Ca(2+) currents is activated by increased CO(2) through a HCO(3)(-)-dependent mechanism. Thus the activity of L-type Ca(2+) channels is likely to play a role in the chemosensitive response of LC neurons and may underlie significant changes in LC neuron chemosensitivity during neonatal development.