Journal of applied physiology
-
Effects of hypoxia on cerebral circulation are important for occupational, high-altitude, and aviation medicine. Increased risk of fainting might be attributable to altered cerebral circulation by hypoxia. Dynamic cerebral autoregulation is reportedly impaired immediately by mild hypoxia. ⋯ Furthermore, transfer function gain and coherence in the very-low-frequency range increased significantly at the beginning of hypoxia, indicating impaired dynamic cerebral autoregulation. However, contrary to the proposed hypothesis, indexes of dynamic cerebral autoregulation showed no significant restoration despite ETCO2 reductions, resulting in persistent higher values of very-low-frequency power of CBF velocity variability during hypoxia (214+/-40% at 5 h of hypoxia vs. control) without significant increases in blood pressure variability. These results suggest that sustained mild hypoxia reduces steady-state CBF and continuously impairs dynamic cerebral autoregulation, implying an increased risk of shortage of oxygen supply to the brain.
-
The purpose of this study was to test the hypothesis that decrease in cerebral oxygenation compromises an individual's ability to respond to peripheral visual stimuli during exercise. We measured the simple reaction time (RT) to peripheral visual stimuli at rest and during and after cycling at three different workloads [40%, 60%, and 80% peak oxygen uptake (VO2)] under either normoxia [inspired fraction of oxygen (FIO2)=0.21] or normobaric hypoxia (FIO2=0.16). Peripheral visual stimuli were presented at 10 degrees to either the right or the left of the midpoint of the eyes. ⋯ Under hypoxia, cerebral oxygenation progressively decreased as exercise workload increased. We found a strong correlation between increase in premotor time and decrease in cerebral oxygenation (r2=0.89, P<0.01), suggesting that increase in premotor time during exercise is associated with decrease in cerebral oxygenation. Accordingly, exercise at high altitude may compromise visual perceptual performance.
-
We previously proposed 5'-AMP-activated protein kinase (AMPK) dephosphorylation within immune cells as an intracellular mechanism linking exercise and immunosuppression. In this study, AMPK phosphorylation underwent transient (<1 h) decreases (53.8+/-7.2% basal) immediately after exercise (45 min of cycling at 70% VO2max) in a cohort of 16 adult male participants. Similar effects were seen with running. ⋯ By analogy, the fact that exercise decreased mononuclear cell ROS content (32.8+/-16.6% basal), possibly due to downregulation (43.4+/-8.0% basal) of mRNA for NOX2, the catalytic subunit of the cytoplasmic ROS-generating enzyme NADPH oxidase, may provide an explanation for the AMPK-dephosphorylating effect of exercise. In contrast, exercise-induced Ca2+ signaling events did not seem to be coupled to changes in AMPK activity. Thus we propose that the exercise-induced decreases in both intracellular ROS and AMPK phosphorylation seen in this study constitute evidence supporting a role for ROS in controlling AMPK, and hence immune function, in the context of exercise-induced immunosuppression.
-
The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. ⋯ Transfer function gain was positively related to nitroprusside BRS (R=0.62, CI 0.24-0.84, P=0.0042), phenylephrine BRS (R=0.52, CI 0.10-0.79, P=0.021), and alpha-index (R=0.69, CI 0.35-0.88, P=0.001). These findings indicate that individuals with an attenuated dynamic CA have greater BRS (and vice versa), suggesting the presence of possible compensatory interactions between blood pressure and mechanisms of cerebral blood flow control in humans. Such compensatory adjustments may account for the divergent changes in dynamic CA and BRS seen, for example, in chronic hypotension and spontaneous hypertension.
-
Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. ⋯ While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.