Journal of applied physiology
-
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. ⋯ We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.
-
This study examined changes in corticomotor excitability and plasticity after a thumb abduction training task in young and old adults. Electromyographic (EMG) recordings were obtained from right abductor pollicis brevis (APB, target muscle) and abductor digiti minimi (ADM, control muscle) in 14 young (18-24 yr) and 14 old (61-82 yr) adults. The training task consisted of 300 ballistic abductions of the right thumb to maximize peak thumb abduction acceleration (TAAcc). ⋯ These changes were specific to APB, because no training-related change in MEP amplitude was observed in ADM. No significant association was observed between change in APB MEP and improvement in TAAcc with training in individual young and old subjects. SICI remained unchanged after training in both groups, suggesting that it was not responsible for the diminished use-dependent corticomotor plasticity for this task in older adults.
-
Prostaglandin I(2) (PGI(2)) has been shown to attenuate vascular constriction, hyperpermeability, inflammation, and acute lung injury. However, molecular mechanisms of PGI(2) protective effects on pulmonary endothelial cells (EC) are not well understood. We tested a role of cAMP-activated Epac-Rap1 pathway in the barrier protective effects of PGI(2) analog iloprost in the murine model of ventilator-induced lung injury. ⋯ In vitro, iloprost increased barrier properties of lung microvascular endothelium and alleviated thrombin-induced EC barrier disruption. In line with in vivo results, Rap1 depletion attenuated protective effects of iloprost in the thrombin model of EC permeability. These data describe for the first time protective effects for Rap1-dependent signaling against ventilator-induced lung injury and pulmonary endothelial barrier dysfunction.
-
Cancer patients receiving doxorubicin chemotherapy experience both muscle weakness and fatigue. One postulated mediator of the muscle dysfunction is an increase in tumor necrosis factor-alpha (TNF), a proinflammatory cytokine that mediates limb muscle contractile dysfunction through the TNF receptor subtype 1 (TNFR1). ⋯ Genetic TNFR1 deficiency prevented the fall in specific force caused by systemic doxorubicin, without protecting against fatigue (P < 0.01). These results demonstrate that clinical doxorubicin concentrations disrupt limb muscle function in a TNFR1-dependent manner.
-
We sought to determine the relationship between lung size and airway size in men and women of varying stature. We also asked if men and women matched for lung size would still have differences in airway size and if so where along the pulmonary airway tree would these differences exist. We used computed tomography to measure airway luminal areas of the large and central airways. ⋯ Within the male and female groups the magnitudes of these associations were decreased or nonsignificant. In males and females matched for lung size women had significantly smaller airway luminal areas. The larger conducting airways in females are significantly smaller than those of males even after controlling for lung size.