Journal of applied physiology
-
Macrophagic lung infiltration is pivotal in the development of lung biotrauma because of ventilation-induced lung injury (VILI). We assessed the performance of [11C](R)-PK11195, a positron emission tomography (PET) radiotracer binding the translocator protein, to quantify macrophage lung recruitment during experimental VILI. Pigs (n = 6) were mechanically ventilated under general anesthesia, using protective ventilation settings (baseline). ⋯ NEW & NOTEWORTHY We assessed the performance of [11C](R)-PK11195, a translocator protein-specific positron emission tomography (PET) radiotracer, to quantify macrophage lung recruitment during experimental ventilation-induced lung injury (VILI). In this proof-of-concept study, we showed that the in vivo quantification of [11C](R)-PK11195 lung uptake in PET reflected the magnitude of macrophage lung recruitment after VILI. Furthermore, increased [11C](R)-PK11195 lung uptake was associated with harmful levels of dynamic strain and tidal hyperinflation applied to the lungs.
-
The patient-ventilator breath contribution (PVBC) index estimates the relative contribution of the patient to total tidal volume (Vtinsp) during mechanical ventilation in neurally adjusted ventilator assist mode and has been used to titrate ventilator support. The reliability of this index in ventilated patients is unknown and was investigated in this study. PVBC was calculated by comparing tidal volume (Vtinsp) and diaphragm electrical activity (EAdi) during assisted breaths (Vtinsp/EAdi)assist and during unassisted breaths (Vtinsp/EAdi)no-assist. ⋯ It could be used to titrate ventilator support and thus to limit development of diaphragm dysfunction in intensive care unit patients. Currently available methods for bedside assessment of PVBC are unreliable. Our newly developed criteria and estimation of PVBC largely improve reliability and help to quantify patient contribution to total inspiratory effort.
-
Clinical Trial
Changes in cerebral oxygen saturation and cerebral blood flow velocity under mild +Gz hypergravity.
We previously reported that cerebral blood flow (CBF) was reduced by even mild +Gz hypergravity. Regional cerebral oxygen saturation as measured by near-infrared spectroscopy (C-rSO2) has been widely used to detect cerebral ischemia in clinical practice. For example, decreases in C-rSO2 reflect reduced CBF or arterial oxygen saturation. ⋯ NEW & NOTEWORTHY To our knowledge, this is the first study to evaluate simultaneously cerebral oxygenation monitored by near-infrared spectroscopy and cerebral blood flow (CBF) monitored by transcranial Doppler under +1.5 Gz hypergravity. Contrary to our hypothesis, there was no significant correlation between CBF velocity and regional cerebral oxygen saturation (C-rSO2). However, an incomplete case nearly involving syncope suggests the possibility that C-rSO2 can detect a remarkable decrease in CBF with development of presyncope during +Gz hypergravity.
-
The purpose of this study was to determine the effects of assuming constant tissue scattering properties on tissue oxygenation measurements during a vascular occlusion test (VOT). Twenty-one subjects (21.8 ± 1.9 yr) completed a VOT [1 min baseline (BL), 5 min of tissue ischemia (TI), and 3 min of vascular reperfusion (VR)]. Absolute concentrations of oxygenated heme (oxy-[heme]), deoxygenated heme (deoxy-[heme]), total heme (total [heme), tissue oxygen saturation (StO2), and heme difference [heme]diff) were measured using frequency domain near-infrared spectroscopy (FD-NIRS) while 1) continuously measuring and incorporating tissue scattering ([Formula: see text]) and 2) assuming scattering remained constant. ⋯ Further, assuming tissue optical properties remain constant may have important consequences to experimental data and clinical conclusions made using NIRS. NEW & NOTEWORTHY NIRS measurements provide significant experimental and clinical insight. We demonstrate that absolute changes in tissue oxygenation measurements made with NIRS are overestimated and the kinetic responses of NIRS measurements are exaggerated by varying degrees among individuals if tissue scattering characteristics are assumed to remain constant during vascular occlusion tests.
-
High-frequency spinal cord stimulation (HF-SCS) applied at the T2 spinal level results in physiologic activation of the inspiratory muscles in C2 spinal-sectioned dogs. Although the bulbo-spinal fibers were cut, they likely survived the duration of acute experiments, and inspiratory muscle activation may have involved stimulation of these fibers. In two anesthetized, C2 paralyzed, intubated, and mechanically ventilated dogs, HF-SCS (300 Hz) was applied at the T2 level. ⋯ HF-SCS therefore may be a useful method to restore ventilation in chronic ventilator dependent tetraplegics. NEW & NOTEWORTHY This study indicates that the respiratory responses to high-frequency spinal cord stimulation applied at the T2 level results in activation of the inspiratory motoneuron pools via interneuronal circuits and/or the inspiratory motoneurons directly and does not depend upon activation of long descending inspiratory bulbo-spinal fibers. This method therefore, may provide an alternative method to restore ventilation in ventilator dependent spinal cord injured patients.