Bone
-
Comparative Study
Effect of mechanical set point of bone cells on mechanical control of trabecular bone architecture.
The architecture of trabecular bone is thought to be controlled by mechanosensitive bone cells, where hormones provide a background for their responses to mechanical signals. It has been suggested that, in osteoporosis, this response is hampered by changed hormonal levels, thereby increasing the mechanical set point of the cells, which would lead to bone loss. We have investigated if a temporary increase of the mechanical set point causes deterioration of trabecular bone architecture, such as seen in osteoporosis. ⋯ Hence, a change of the mechanical set point alone cannot explain bone loss as seen in osteoporosis. On the other hand, the removal of load components in a particular direction resulted in irreversible loss of whole trabeculae. These results indicate that such temporary changes in loading patterns could be important risk factors for osteoporosis.
-
Comparative Study
Effect of bone area on spine density in Chinese men and women in Taiwan.
Areal bone mineral density (BMD), the quotient of bone mineral content (BMC) divided by the projectional bone area (BA), measured with dual-energy X-ray absorptiometers (DXA), is the most common parameter used today to evaluate spinal osteoporosis. To evaluate whether gender, age, weight, and height can determine spinal BA, and to compare BA and analyze its effects on spinal density in the two genders, we measured BA and BMC, and calculated areal BMD, and the bone mineral apparent density (BMAD = BMD/the square root of BA) of the L-2 to L-4 vertebrae of 604 female and 223 male Chinese volunteers from 20 to 70 years of age using a Norland XR-26 DXA. Standardized for height and weight, BA showed a relatively large variation and a significant increase with increasing age in both genders. ⋯ Although taller body height, heavier weight, and increasing age were associated with a larger BA, these factors could not explain most of the interindividual variations in BA in both genders. Thus anteroposterior BA of lumbar vertebrae measured with DXA seems to affect the areal BMD and BMAD readings in the two genders. The larger BA caused a low BMAD and probably underestimated the true volumetric spine density in men.
-
Multicenter Study
Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study.
The purpose of this prospective study was to monitor the bone mineral density (BMD) of the lumbar spine and contralateral femoral neck in the first year following an osteoporosis-related fracture of the hip. Eighty-three elderly patients (mean age 77 years) who had sustained a hip fracture had determinations of BMD made at the time of fracture; 49 of these patients were available for reassessment of BMD 1 year later. The change in BMD was correlated with pre- and postinjury variables, such as ambulatory ability, dietary intake of calcium, serum vitamin D levels, mental status, and routine serologies. ⋯ The loss of BMD from the femoral neck in the year following a hip fracture is more than five times that reported in the nonfractured population. This accelerated rate of loss can have drastic consequences in an elderly population already exhibiting osteopenia and propensity to fall. Investigation of pharmacologic or other interventions in the first critical year following a hip fracture may potentially blunt this accelerated rate of bone loss and lessen the risk of subsequent fractures.
-
Femoral neck axis length, neck width, and neck-shaft angle were measured on radiographs of right proximal femora from 64 cadavers (28 female, 36 male). Bone mineral density (BMD) was measured using dual energy X-ray absorptiometry (DXA) for various regions of interest, and quantitative computed tomography (QCT) was used to determine BMD and bone areas for cortical and trabecular bone at the trochanter and femoral neck. The strength of the femur was determined by a mechanical test simulating a fall on the greater trochanter, and the fracture type (cervical or trochanteric) was subsequently determined from radiographs. ⋯ The results demonstrated that DXA and QCT had a similar ability to predict femoral strength in vitro. Trochanteric BMD was the best DXA parameter, and cortical area (not cortical BMD) was the optimal QCT parameter. Geometric measurements of the proximal femur were only weakly correlated with the mechanical strength, and combinations of DXA, QCT, and geometric parameters resulted in only small increases in predictive power compared to the use of a single explanatory variable alone.