Surgical and radiologic anatomy : SRA
-
Controlled Clinical Trial
White matter damage of patients with Alzheimer's disease correlated with the decreased cognitive function.
Increasing evidence demonstrates that there is marked damage and dysfunction in the white matter in Alzheimer's disease (AD). The present study investigates the nature of white matter damage of patients with Alzheimer's disease with diffusion tensor magnetic resonance imaging (DTI) and analyses the relationship between the white matter damage and the cognition function. DTI, as well as T1 fluid attenuated inversion recovery (FLAIR) and T2-FLAIR, was performed on probable patients of Alzheimer's disease, and sex and age matched healthy volunteers to measure the fractional anisotropy (FA) and mean diffusivity (MD) in the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, and the white matter of frontal, temporal, parietal, and occipital lobes. ⋯ The most prominent alteration of FA and MD was in the splenium of corpus callosum. Our results suggested that white matter of patients with Alzheimer's disease was selectively impaired and the extent of damage had a strong correlation with the cognitive function, and that selective impairment reflected the cortico-cortical and cortico-subcortical disconnections in the pathomechanism of Alzheimer's disease. The values of FA and MD in white matter, especially in the splenium of corpus callosum in AD patients, might be a more appropriate surrogate marker for monitoring the disease progression.
-
The aim of this study was to describe the detailed anatomical arrangement of ligaments of the tibiofibular syndesmosis and to highlight the clinical aspects of fracture dislocations. This study was performed on 42 legs of adult human embalmed cadavers. Tibiofibular syndesmosis ligaments attachments and their mutual relationships were described and their dimensions were measured. ⋯ The length of this cartilage was variable. Some of synovial plicas from the ankle joints synovial membrane were observed at this view. We conclude that the results of this study may be useful to both orthopedic surgeons and radiologists for anatomic evaluation of the tibiofibular syndesmosis area.
-
We searched for the surgically risky anatomic variations of sphenoid sinus and aimed to compare axial and coronal tomography in detection of these variations. Fifty-six paranasal tomography images (112 sides) were evaluated for coronal, axial and both coronal and axial images. Tomographic findings including bony septum extending to optic canal or internal carotid artery; protrusions and dehiscences of the walls of internal carotid artery, optic nerve, maxillary nerve and vidian nerve; extreme medial course of internal carotid artery; patterns of aeration of the anterior clinoid process; and Onodi cells were evaluated. ⋯ In cadaveric dissections, the septa were inserted into the bony covering of the carotid arteries in two sinuses (8.3%). Detailed preoperative analysis of the anatomy of the sphenoid sinus and its boundaries is crucial in facilitating entry to the pituitary fossa and reducing intraoperative complications. Coronal tomography more successfully detects the sphenoid sinus anatomic variations.
-
The most widely accepted description of venous anatomy in the transverse foramen involves the presence of one or two veins running along and parallel to the external side of the vertebral artery. For most surgeons, the vertebral artery is surrounded by a rete of veins which is continous with the wide sinusoids which surround the thecal sac (internal vertebral venous plexus). The goal of this study was to ascertain the exact structure of the venous system in the transverse canal by micro dissection and histology. ⋯ There was no evidence of a vein inside the transverse canal. The periosteum spans the space between the transverse processes and gives off fibrous leaflets to the artery thus forming a compartmentalized space lined with vascular endothelium around the artery. The venous system in the transverse canal presents itself as a sinus similar to the intracranial sinus structure.
-
"Open-book" pelvic fractures associate a diastasis and/or a fracture of the pubic rami with a posterior pelvic disruption of the sacro-iliac joint. These uni or bilateral lesions are potentially lethal mainly due to associated injuries and massive pelvic hemorrhage. The most frequently injured arteries are parietal branch of the commune, internal or external arteries because of their proximity to the bone, the sacro-iliac joint and the inferior ligaments of the pelvis. The pelvic bone dislocation and the increase of pelvic volume facilitate blood effusion. The aim of this study was to determine, on a cadaver fracture model, the direct anatomical consequences of "open-book" pelvic fracture on the ilio-lumbar pedicle and the pelvic cavity volume. ⋯ Open-book fractures create an increase of pelvic volume that facilitates blood diffusion from parietal pelvic vascular network. Ilio-lumbar pedicle seems to be very vulnerable in this type of fracture because of its relations to the sacro-iliac joint and its transversal disposition with regard to this joint.