Biomedical chromatography : BMC
-
Biomed. Chromatogr. · Apr 2021
Analysis of chemical variations between raw and wine-processed Ligustri Lucidi Fructus by ultra-high-performance liquid chromatography-Q-Exactive Orbitrap/MS combined with multivariate statistical analysis approach.
Ligustri Lucidi Fructus (LLF) is the dried and mature fruit of Ligubtrum lucidum Ait., which has the effect of nourishing the liver and kidney, brightening the eyes and promoting the growth of black hair. Wine-processed LLF is commonly used in traditional Chinese medicine; however, the processing mechanisms are still unclear. Herein, a system data acquisition and mining strategy was designed to investigate the chemical profile differences between the raw and wine-processed LLF, based on high-performance liquid chromatography-Orbitrap high resolution mass spectrometry coupled with multivariate statistical analysis including principal component analysis and partial least square analysis. ⋯ In addition, 10 main constituents of raw and wine-processed LLF were simultaneously determined by UHPLC-MS/MS for analyzing the content variations. Some structural transformation mechanisms during wine processing were deduced from the results. The results may provide a scientific foundation for deeply elucidating the wine-processing mechanism of LLF.
-
Biomed. Chromatogr. · Jul 2020
Identification of prototypes from Ligustri Lucidi Fructus in rat plasma based on a data-dependent acquisition and multicomponent pharmacokinetic study.
The identification and quantization of traditional Chinese medicine (TCM) are a challenge for researchers and industry. Using untargeted analytical methods, the in vivo detection and identification of TCM compounds are difficult because of the significant interference of endogenous substances. Fortunately, the ongoing development of new analytical technologies, especially Q-Orbitrap-MS, offers some solutions. ⋯ Forty-seven compounds were characterized in rats plasma as prototypes of LLF extract. Furthermore, seven major prototypes were chosen as pharmacokinetic markers to investigate LLF's pharmacokinetic properties. The results provides comprehensive determination of compounds in LLF both in vitro and in vivo, which is important for quality control, pharmacology studies and clinical use of LLF.
-
Biomed. Chromatogr. · Apr 2020
Validation of an analytical method using UPLC-MS/MS to quantify four bioactive components in rat plasma and its application to pharmacokinetic study of traditional and dispensing granules decoction of Ziziphi Spinosae Semen.
A rapid and sensitive UPLC-MS/MS method was established for the simultaneous quantification of 6'''-feruloylspinosin, spinosin, jujuboside A, and jujuboside B in rat plasma after the oral administration of traditional and dispensing granules (DG) decoction of Ziziphi Spinosae Semen (ZSS). The four components were separated using 0.1% formic acid and acetonitrile as a mobile phase by gradient elution at a flow rate of 0.3 mL/min equipped with a C18 column (2.1 × 50 mm, 1.7 μm particle size, Acquity BEH C18 ). The mass spectrometer was operated under multiple reaction monitoring mode. ⋯ MRT0-t of jujuboside B was significantly increased. No significant variation was observed for the pharmacokinetic parameters of spinosin. The results could provide a scientific basis for the clinical application of traditional and DG decoction of ZSS.
-
Biomed. Chromatogr. · Mar 2018
UPLC-HR-MS/MS-based determination study on the metabolism of four synthetic cannabinoids, ADB-FUBICA, AB-FUBICA, AB-BICA and ADB-BICA, by human liver microsomes.
Since 2012, several cannabimimetic indazole and indole derivatives with valine amino acid amide residue have emerged in the illicit drug market, and have gradually replaced the old generations of synthetic cannabinoids (SCs) with naphthyl or adamantine groups. Among them, ADB-FUBICA [N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide], AB-FUBICA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide], AB-BICA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-benzyl-1H-indole-3-carboxamide] and ADB-BICA [N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-benzyl-1H-indole-3-carboxamide] were detected in China recently, but unfortunately no information about their in vitro human metabolism is available. ⋯ Metabolites generated by N-dealkylation and hydroxylation on the 1-amino-alkyl moiety were found to be predominant for all these four substances, and others which underwent hydroxylation, amide hydrolysis and dehydrogenation were also observed in our investigation. Based on our research, we recommend that the N-dealkylation and hydroxylation metabolites are suitable and appropriate analytical markers for monitoring their intake.
-
Biomed. Chromatogr. · Nov 2016
Qualitative and quantitative analysis of the chemical constituents in Mahuang-Fuzi-Xixin decoction based on high performance liquid chromatography combined with time-of-flight mass spectrometry and triple quadrupole mass spectrometers.
High-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF/MS) and high-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ/MS/MS) were utilized to clarify the chemical constituents of Mahuang-Fuzi-Xixin Decoction. There are 52 compounds, including alkaloids, amino acids and organic acids were identified or tentatively characterized by their characteristic high resolution mass data by HPLC-QQQ/MS/MS. In the subsequent quantitative analysis, 10 constituents, including methyl ephedrine, aconine, songrine, fuziline, neoline, talatisamine, chasmanine, benzoylmesaconine, benzoylaconine and benzoylhypaconine were simultaneously determined by HPLC-QQQ/MS/MS with multiple reaction monitoring mode. ⋯ The relative standard deviations (RSD) of inter- and intra-day precisions were <3%. This method was also validated by repeatability, stability and recovery with RSD <3% respectively. A highly sensitive and efficient method was established for chemical constituents studying, including identification and quantification of Mahuang-Fuzi-Xixin decoction.