Movement disorders : official journal of the Movement Disorder Society
-
Spinocerebellar ataxia type 2 (SCA2) is an autosomal-dominant degenerative disorder that is neuropathologically characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. Diffusion-weighted imaging (DWI)-Magnetic Resonance Imaging (MRI) studies of SCA2 have enabled in vivo quantification of neurodegeneration in infratentorial regions, whereas supratentorial regions have been explored less thoroughly. We measured microstructural changes in both infratentorial and supratentorial regions in 13 SCA2 patients (9 men, 4 women; mean age, 50 ± 12 years) and 15 controls (10 men, 5 women; mean age, 49 ± 14 years) using DWI-MRI and correlated the DWI changes with disease severity and duration. ⋯ Moreover, SPM analysis revealed increased D¯ values in the right thalamus, bilateral temporal cortex/white matter, and motor cortex/pyramidal tract regions. Increased diffusivity in the frontal white matter (FWM) and the CWM was significantly correlated with ataxia severity. DWI-MRI revealed that both infratentorial and supratentorial microstructural changes may characterize SCA2 patients in the course of the disease and might contribute to the severity of the symptoms.
-
Rapid eye movement (REM) sleep behavior disorder (RBD) is frequently observed in patients with Parkinson's disease (PD). Accurate diagnosis is essential for managing this condition. Furthermore, the emergence of idiopathic RBD in later life can represent a premotor feature, heralding the development of PD. ⋯ This study suggests that the RBDSQ does not accurately identify RWA, essential for diagnosing RBD in PD. Furthermore, the results suggest that self-report measures of RBD need to focus questions on dream enactment behavior to better identify RWA and RBD. Further studies are needed to develop accurate determination and quantification of RWA in RBD to improve management of patients with PD in the future.
-
Progress in characterization of the nature, neural basis, and treatment of cognitive deficits in Parkinson's disease is reviewed from the perspective of cognitive neuroscience. An initial emphasis on fronto-striatal executive deficits is surveyed along with the discoveries of disruption as well as remediation of certain impairments by dopaminergic mediation and their association with theories of reinforcement learning. Subsequent focus on large cohorts has revealed considerable heterogeneity in the cognitive impairments as well as a suggestion of at least two distinct syndromes, with the dopamine-dependent fronto-striatal deficits being somewhat independent of other signs commonly associated with Parkinson's disease dementia. The utility is proposed of a new, integrated cognitive neuroscience approach based on combining genetic and neuroimaging methodologies with neuropsychological and, ultimately, psychopharmacological approaches.
-
Cognitive impairment represents an important and often defining component of the clinical syndromes of Lewy body disorders: Parkinson's disease and dementia with Lewy bodies. The spectrum of cognitive deficits in these Lewy body diseases encompasses a broad range of clinical features, severity of impairment, and timing of presentation. It is now recognized that cognitive dysfunction occurs not only in more advanced Parkinson's disease but also in early, untreated patients and even in those patients with pre-motor syndromes, such as rapid eye movement behavior disorder and hyposmia. ⋯ In addition, the conundrum of whether Parkinson's disease dementia and dementia with Lewy bodies represent the same or different entities remains unresolved. Although these disorders overlap in many aspects of their presentations and pathophysiology, they differ in other elements, such as timing of cognitive, behavioral, and motor symptoms; medication responses; and neuropathological contributions. This article examines the spectrum and evolution of cognitive impairment in Lewy body disorders and debates these controversial issues in the field using point-counterpoint approaches.
-
Speech changes after bilateral subthalamic nucleus deep brain stimulation (STN-DBS) can be variable, with the majority of patients experiencing speech deterioration over time. The aim of this study was to describe the perceptual characteristics of speech following chronic STN-DBS and to analyze clinical and surgical factors that could predict speech change. Fifty-four consecutive patients (34 men; mean age ± standard deviation (SD), 58.8 ± 6.3 years; mean ± SD disease duration, 12.5 ± 4.7 years; mean ± SD levodopa equivalent, 1556 ± 671 mg/day; mean ± SD Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) off-medication score, 48.1 ± 17.9 [range, 20-89]; and mean ± SD UPDRS-III on-medication score, 12.4 ± 7.8 [range, 2-31]) participated in this study. ⋯ Speech change after STN-DBS is variable and multifactorial. Consistent preoperative speech evaluation would help inform patients about the possible effects of surgery. Appropriate consideration of speech deficits might assist surgical targeting, particularly of the left electrode.