Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
-
Nephrol. Dial. Transplant. · Feb 2014
Renal vein cytokine release as an index of renal parenchymal inflammation in chronic experimental renal artery stenosis.
Renal parenchymal inflammation is a critical determinant of kidney injury in renal artery stenosis (RAS) but is difficult to assess in the single kidney without tissue samples. Whether renal vein (RV) levels of inflammatory markers reflect active parenchymal inflammation remains unknown. We evaluated the relationship between net RV cytokine release and tissue inflammation in the post-stenotic kidney. ⋯ Our findings demonstrate that the release of inflammatory markers from the affected kidney provides an index of renal tissue inflammation in experimental RAS.
-
The coagulation system has gained much interest again as new anticoagulatory substances have been introduced into clinical practice. Especially patients with renal failure are likely candidates for such a therapy as they often experience significant comorbidity including cardiovascular diseases that require anticoagulation. Patients with renal failure on new anticoagulants have experienced excessive bleeding which can be related to a changed pharmacokinetic profile of the compounds. ⋯ Recent work provides evidence that new factors such as microparticles (MPs) can influence the coagulation system in patients with renal insufficiency through their potent procoagulatory effects. Interestingly, MPs may also contain microRNAs thus inhibiting the function of platelets, resulting in bleeding episodes. This review comprises the findings on the complex pathophysiology of coagulation disorders including new factors such as MPs and microRNAs in patients with renal insufficiency.
-
Nephrol. Dial. Transplant. · Jan 2014
Observational StudyRepulsive guidance cue semaphorin 3A in urine predicts the progression of acute kidney injury in adult patients from a mixed intensive care unit.
Predicting the development of acute kidney injury (AKI) in the critical care setting is challenging. Although several biomarkers showed somewhat satisfactory performance for detecting established AKI even in a heterogeneous disease-oriented population, identification of new biomarkers that predict the development of AKI accurately is urgently required. ⋯ Three hundred thirty-nine critically ill adult patients were recruited for this study. Among them, 131 patients (39%) were diagnosed with AKI by the RIFLE criteria and 66 patients were diagnosed as AKI at post-ICU admission (later-onset AKI). Eighty-four AKI patients showed worsening severity during 1 week observation (AKI progression). Although L-FABP, NGAL and IL-18 showed significantly higher area under the curve (AUC)-receiver operating characteristic (ROC) values than semaphorin 3A in detecting established AKI, semaphorin 3A was able to detect later-onset AKI and AKI progression with similar AUC-ROC values compared with the other five biomarkers [AUC-ROC (95% CI) for established AKI 0.64 (0.56-0.71), later-onset AKI 0.71 (0.64-0.78), AKI progression 0.71 (0.64-0.77)]. Urinary semaphorin 3A was not increased in non-progressive established AKI, while the other biomarkers were elevated regardless of further progression. Finally, sepsis did not have any impact on semaphorin 3A while the other urinary biomarkers were increased with sepsis. Semaphorin 3A is a new biomarker of AKI which may have a distinct predictive use for AKI progression when compared with other AKI biomarkers.
-
Nephrol. Dial. Transplant. · Jan 2014
Fluid flow shear stress over podocytes is increased in the solitary kidney.
Glomerular hyperfiltration is emerging as the key risk factor for progression of chronic kidney disease (CKD). Podocytes are exposed to fluid flow shear stress (FFSS) caused by the flow of ultrafiltrate within Bowman's space. The mechanism of hyperfiltration-induced podocyte injury is not clear. We postulated that glomerular hyperfiltration in solitary kidney increases FFSS over podocytes. ⋯ FFSS over podocytes is increased in solitary kidneys in both infant rats and adult mice. This increase is a consequence of increased SNGFR. We speculate that increased FFSS caused by reduced nephron number contributes to podocyte injury and promotes the progression of CKD.