Pediatric nephrology : journal of the International Pediatric Nephrology Association
-
Acute kidney injury (AKI) is a commonly encountered complication in critically ill children and portends a worse prognosis. Sepsis-induced AKI (SAKI) is a leading contributor to AKI in children and significantly modifies the risk for less favorable outcome. It has increasingly become clear that SAKI represents a unique and distinct cause of AKI. ⋯ Currently, the mainstays for managing SAKI focus on alleviating ongoing kidney damage by optimizing systemic and kidney hemodynamic support, avoiding nephrotoxins, and mitigating the anticipated complications of kidney failure. The timely referral for renal support to manage azotemia, metabolic derangements, and fluid accumulation remains critical for this population. The extracorporeal removal of inflammatory mediators has shown some potential benefit in limiting systemic and kidney immune-mediated injury; however, the precise role of these technologies in the management of SAKI has yet to be defined.
-
Fluid management has a major impact on the duration, severity and outcome of critical illness. The overall strategy for the acutely ill child should be biphasic. Aggressive volume expansion to support tissue oxygen delivery as part of early goal-directed resuscitation algorithms for shock--especially septic shock--has been associated with dramatic improvements in outcome. ⋯ Identifying the point at which patients change from the 'early shock' pattern to the later 'chronic critical illness' pattern remains a major challenge. Very little data are available on the choice of fluids, and most of the information that is available arises from studies of critically ill adults. There is therefore an urgent need for high-quality trials of both resuscitation and maintenance fluid regimens in critically ill children.
-
There is a growing appreciation for the role that acute kidney injury (AKI) plays in the propagation of critical illness. In children, AKI is not only an independent predictor of morbidity and mortality, but is also associated with especially negative outcomes when concurrent with acute lung injury (ALI). Experimental data provide evidence that kidney-lung crosstalk occurs and can be bidirectionally deleterious, although details of the precise molecular mechanisms involved in the AKI-ALI interaction remain incomplete. ⋯ Experimental AKI research supports an "endocrine" role for the kidney, triggering a cascade of extra-renal inflammatory responses affecting lung homeostasis. In this review, we will discuss the pathophysiology of kidney-lung crosstalk, the multiple pathways by which AKI affects kidney-lung homeostasis, and discuss how these phenomena may be unique in critically ill children. Understanding how AKI may affect a "balance of communication" that exists between the kidneys and the lungs is requisite when managing critically ill children, in whom imbalance is the norm.
-
Acute kidney injury (AKI) increases the morbidity of critically ill children. Thus, it is necessary to identify better renal biomarkers to follow the outcome of these patients. This prospective case-control study explored the clinical value of a urinary biomarker profile comprised of neutrophil gelatinase lipocalin (uNGAL), fibroblast growth factor-2 (uFGF-2), and epidermal growth factor (uEGF) to follow these patients. ⋯ The biomarker profile comprised of uNGAL, uFGF-2, and uEGF increased the specificity to detect AKI in critically ill children, when compared to each biomarker used alone. uNGAL and uFGF-2 may also predict the risk of death. Further validation of these findings in a large sample size is warranted.
-
Observational Study
A novel urinary biomarker profile to identify acute kidney injury (AKI) in critically ill neonates: a pilot study.
The goal of this study was to assess the value of a urinary biomarker profile comprised of neutrophil gelatinase-associated lipocalin (NGAL), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), to detect acute kidney injury (AKI) in critically ill neonates. ⋯ These findings require validation in larger prospective studies.