Free radical biology & medicine
-
Free Radic. Biol. Med. · Apr 2014
Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat.
Neuroglobin is a neuron-specific hexacoordinated globin capable of binding various ligands, including O2, NO, and CO, the biological function of which is still uncertain. Various studies seem to indicate that neuroglobin is a neuroprotective agent when overexpressed, acting as a potent inhibitor of oxidative and nitrosative stress. In this study, we evaluated the pathophysiological response of the neuroglobin gene and protein expression in the cerebral tissue of rats sustaining traumatic brain injury of differing severity, while simultaneously measuring the oxidant/antioxidant balance. ⋯ Results indicated that mild traumatic brain injury, although causing a reversible increase in oxidative/nitrosative stress (increase in malondialdehyde and nitrite + nitrate) and an imbalance in antioxidants (decrease in ascorbate and GSH), did not induce any change in neuroglobin. Conversely, severe traumatic brain injury caused an over nine- and a fivefold increase in neuroglobin gene and protein expression, respectively, as well as a remarkable increase in oxidative/nitrosative stress and depletion of antioxidants. The results of this study, showing a lack of effect in mild traumatic brain injury as well as asynchronous time course changes in neuroglobin expression, oxidative/nitrosative stress, and antioxidants in severe traumatic brain injury, do not seem to support the role of neuroglobin as an endogenous neuroprotective antioxidant agent, at least under pathophysiological conditions.
-
Free Radic. Biol. Med. · Apr 2014
Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling.
Cigarette smoking causes persistent lung inflammation that is mainly regulated by redox-sensitive pathways. We have reported that cigarette smoke (CS) activates a NADPH oxidase-dependent reactive oxygen species (ROS)-sensitive AMP-activated protein kinase (AMPK) signaling pathway leading to induction of lung inflammation. Glucosamine, a dietary supplement used to treat osteoarthritis, has antioxidant and anti-inflammatory properties. ⋯ Additionally, using a ROS scavenger, a siRNA that targets AMPK, and various pharmacological inhibitors, we identified the signaling cascade that leads to induction of IL-8 by CSE. All these CSE-induced events were inhibited by glucosamine pretreatment. Our findings suggest a novel role for glucosamine in alleviating the oxidative stress and lung inflammation induced by chronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro by inhibiting both the ROS-sensitive NADPH oxidase/AMPK/MAPK signaling pathway and the downstream transcriptional factors NF-κB and STAT3.
-
Free Radic. Biol. Med. · Feb 2014
Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice.
Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced reactive oxygen species (ROS) are thought to be a major factor in the development of acute renal injury by promoting the initial tubular damage. ⋯ quinone oxidoreductase 1 (NQO1) is a well-known antioxidant protein that regulates ROS generation. The purpose of this study was to investigate whether NQO1 modulates the renal I/R injury (IRI) associated with NADPH oxidase (NOX)-derived ROS production in an animal model. We analyzed renal function, oxidative stress, and tubular apoptosis after IRI. NQO1(-/-) mice showed increased blood urea nitrogen and creatinine levels, tubular damage, oxidative stress, and apoptosis. In the kidneys of NQO1(-/-) mice, the cellular NADPH/NADP(+) ratio was significantly higher and NOX activity was markedly higher than in those of NQO1(+/+) mice. The activation of NQO1 by β-lapachone (βL) significantly improved renal dysfunction and reduced tubular cell damage, oxidative stress, and apoptosis by renal I/R. Moreover, the βL treatment significantly lowered the cellular NADPH/NADP(+) ratio and dramatically reduced NOX activity in the kidneys after IRI. From these results, it was concluded that NQO1 has a protective role against renal injury induced by I/R and that this effect appears to be mediated by decreased NOX activity via cellular NADPH/NADP(+) modulation. These results provide convincing evidence that NQO1 activation might be beneficial for ameliorating renal injury induced by I/R.
-
Free Radic. Biol. Med. · Dec 2013
NLRP3 inflammasome activation in D-galactosamine and lipopolysaccharide-induced acute liver failure: role of heme oxygenase-1.
D-Galactosamine (GalN) and lipopolysaccharide (LPS) are commonly used to study mechanisms of hepatic malfunction that result in hepatic inflammation and subsequent fulminant hepatic failure. Inflammasomes are intracellular multiprotein complexes that in response to cellular danger signals trigger the biological maturation of proinflammatory cytokines. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that induces anti-inflammatory and antioxidant activity against oxidative cellular stress. ⋯ The effects of hemin were reversed by ZnPP. Our findings suggest that activation of the NLRP3 inflammasome leads to a GalN/LPS-induced inflammatory response through TXNIP-NLRP3 interaction. Furthermore, HO-1 overexpression may protect the liver against GalN/LPS-induced inflammation through suppression of the NLRP3 signaling pathway.
-
Free Radic. Biol. Med. · Dec 2013
Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signaling pathway and is considered a promising therapeutic target in the treatment of diabetes. However, the role of PTP1B in palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells has not been studied. Here we investigate the effects of PTP1B modulation on mitochondrial function and apoptosis and elucidate the underlying mechanisms in skeletal muscle cells. ⋯ In addition, PTP1B inhibition was accompanied by decreased JNK phosphorylation and increased insulin-stimulated Akt (Ser473) phosphorylation, whereas overexpression of PTP1B had the opposite effect. The overexpression of PTP1B also induced the nuclear localization of FOXO-1, but in contrast, suppression of PTP1B reduced palmitate-induced nuclear localization of FOXO-1. In summary, our results indicate that PTP1B modulation results in (1) alterations in mitochondrial function by changes in the activity of SIRT1/NF-κB/PGC-1α pathways and (2) changes in apoptosis that result from either a direct effect of PTP1B on the insulin signaling pathway or an indirect influence on ceramide content, ROS generation, JNK activation, and FOXO-1 nuclear translocation.