Free radical biology & medicine
-
Free Radic. Biol. Med. · Aug 2013
Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: could it correlate with in vivo neuropathy?
Oxaliplatin is a platinum-organic drug with antineoplastic properties used for colorectal cancer. With respect to the other platinum derivates oxaliplatin induces only a mild hematological and gastrointestinal toxicity. Its limiting side effect is its neurotoxicity, which results in a sensory neuropathy. ⋯ The damage prevention effects of silibinin and α-tocopherol on nervous system-derived cells did not interfere with the oxaliplatin antineoplastic in vitro mechanism as evaluated on a human colon adenocarcinoma cell line (HT29). Moreover, neither silibinin nor α-tocopherol modified the oxaliplatin-induced apoptosis in HT29 cells, suggesting a different antiapoptotic profile in normal vs tumoral cells for these antioxidant compounds. In conclusion, because data obtained in in vitro cellular models parallel the in vivo study we propose cell models to investigate oxaliplatin neurotoxicity and to screen possible therapeutic adjuvant agents.
-
Free Radic. Biol. Med. · Jul 2013
Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast.
We investigate the hypothesis that oxidative damage of the cerebral vascular barrier interface (the blood-brain barrier, BBB) causes the development of mild traumatic brain injury (TBI) during a primary blast-wave spectrum. The underlying biochemical and cellular mechanisms of this vascular layer-structure injury are examined in a novel animal model of shock tube. We first established that low-frequency (123kPa) single or repeated shock wave causes BBB/brain injury through biochemical activation by an acute mechanical force that occurs 6-24h after the exposure. ⋯ The detection of brain cell proteins neuron-specific enolase and S100β in the blood samples validated the neuroastroglial injury in shock-wave TBI. Our hypothesis that cerebral vascular injury occurs before the development of neurological disorders in mild TBI was further confirmed by the activation of caspase-3 and cell apoptosis mostly around the perivascular region. Thus, induction of oxidative stress and activation of matrix metalloproteinases by shock wave underlie the mechanisms of cerebral vascular BBB leakage and neuroinflammation.
-
Free Radic. Biol. Med. · Mar 2013
Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen species generation.
The mitochondrial electron transport chain is the major source of reactive oxygen species (ROS) during cardiac ischemia. Several mechanisms modulate ROS production; one is mitochondrial Ca(2+) uptake. Here we sought to elucidate the effects of extramitochondrial Ca(2+) (e[Ca(2+)]) on ROS production (measured as H(2)O(2) release) from complexes I and III. ⋯ In the presence of excess e[Ca(2+)], adding cyclosporin A to inhibit mitochondrial permeability transition pore opening restored ΔΨ and significantly decreased antimycin A-induced H(2)O(2) release. Succinate accumulates during ischemia to become the major substrate utilized by cardiac mitochondria. The inability of mitochondria to maintain a fully polarized ΔΨ under excess e[Ca(2+)] when succinate, but not pyruvate, is the substrate may indicate a permeabilization of the mitochondrial membrane, which enhances H(2)O(2) emission from complex III during ischemia.
-
Free Radic. Biol. Med. · Dec 2012
Chloride transport in functionally active phagosomes isolated from Human neutrophils.
Chloride anion is critical for hypochlorous acid (HOCl) production and microbial killing in neutrophil phagosomes. However, the molecular mechanism by which this anion is transported to the organelle is poorly understood. In this report, membrane-enclosed and functionally active phagosomes were isolated from human neutrophils by using opsonized paramagnetic latex microspheres and a rapid magnetic separation method. ⋯ Phagosomal uptake of iodide and protein iodination were significantly blocked by chloride channel inhibitors, including CFTRinh-172 and NPPB. Further experiments determined that the V-ATPase-driving proton flux into the isolated phagosomes required chloride cotransport, and the cAMP-activated CFTR chloride channel was a major contributor to the chloride transport. Taken together, the data suggest that the phagosomal preparation described herein retains ion transport properties, and multiple chloride channels including CFTR are responsible for chloride supply to neutrophil phagosomes.
-
Free Radic. Biol. Med. · Dec 2012
Angeli's salt counteracts the vasoactive effects of elevated plasma hemoglobin.
Plasma hemoglobin (Hb) released during intravascular hemolysis has been associated with numerous deleterious effects that may stem from increased nitric oxide (NO) scavenging, but has also been associated with reactive oxygen species generation and platelet activation. Therapies that convert plasma oxyHb to metHb, or metHb to iron-nitrosyl Hb, could be beneficial because these species do not scavenge NO. In this study, we investigated the effects of Angeli's salt (AS; sodium α-oxyhyponitrite, Na2N2O3), a nitroxyl (HNO) and nitrite (NO2(-)) donor, on plasma Hb oxidation and formation of iron-nitrosyl Hb from metHb and on the vasoactivity of plasma Hb. ⋯ We also found that AS reduced platelet activation when administered to whole blood in vitro. These data suggest that AS-like compounds could serve as therapeutic agents to counteract the negative vasoconstrictive consequences of hemolysis that occur in hemolytic anemias, transfusion of stored blood, and other diseases. Increases in metHb in the red blood cell, the potential of AS for neurotoxicity, and hypotension would need to be carefully monitored in a clinical trial.