Free radical biology & medicine
-
Free Radic. Biol. Med. · Mar 2012
Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells.
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. ⋯ Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels.
-
Free Radic. Biol. Med. · Jan 2012
Muscle and blood redox status after exercise training in severe COPD patients.
Beneficial effects of exercise training in patients with chronic obstructive pulmonary disease (COPD) are acknowledged. However, high-intensity exercise may enhance muscle oxidative stress in severe COPD patients. We hypothesized that high-intensity exercise training of long duration does not deteriorate muscle redox status. ⋯ Muscle and blood levels of inflammatory cytokines were not modified by training in either patients or controls. We conclude that in severe COPD patients, high-intensity exercise training of long duration improves exercise capacity while preventing the enhancement of systemic and muscle oxidative stress. In addition, in these patients, resting protein oxidation levels correlate between skeletal muscle and blood compartments.
-
Free Radic. Biol. Med. · Oct 2011
ReviewOxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling.
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. ⋯ The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.
-
Free Radic. Biol. Med. · Sep 2011
ReviewUncoupling proteins and the control of mitochondrial reactive oxygen species production.
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. ⋯ In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.
-
Free Radic. Biol. Med. · Sep 2011
Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia.
Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. ⋯ These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke.