Free radical biology & medicine
-
Free Radic. Biol. Med. · Jul 2017
Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1.
Epigallocatechin gallate (EGCG) is the most abundant and effective green tea catechin and has been reported to attenuate diabetic nephropathy (DN). However, the mechanism by which EGCG ameliorates DN, till now, has remained unclear. EGCG is known as a potent activator of nuclear factor erythroid 2-related factor 2 (NRF2), which plays a key role in cellular defense against diabetes-induced oxidative stress and in the prevention of DN. ⋯ Interestingly, EGCG failed to enhance NRF2 signaling and alleviate oxidative, inflammatory and fibrotic indicators, in the presence of Keap1 siRNA. The present study demonstrated, for the first time, that NRF2 plays a critical role in EGCG protection against DN. Other findings indicated that inactivation of KEAP1 protein by EGCG may mediate EGCG function in activating NRF2.
-
Thioredoxin (TRX), an endogenous anti-oxidant protein induced in inflammatory conditions, has been shown to increase in plasma and to be associated with outcome in septic patients. This biomarker has never been studied in a trauma setting. We hypothesized that TRX would be increased after trauma and associated with post-injury sepsis. ⋯ Retrospective cohort study, level III.
-
Free Radic. Biol. Med. · Feb 2017
Randomized Controlled TrialIntraoperative cerebral oxygenation, oxidative injury, and delirium following cardiac surgery.
Delirium affects 20-30% of patients after cardiac surgery and is associated with increased mortality and persistent cognitive decline. Hyperoxic reperfusion of ischemic tissues increases oxidative injury, but oxygen administration remains high during cardiac surgery. We tested the hypothesis that intraoperative hyperoxic cerebral reperfusion is associated with increased postoperative delirium and that oxidative injury mediates this association. ⋯ Intraoperative hyperoxic cerebral reperfusion was associated with increased postoperative delirium, and increased oxidative injury following hyperoxic cerebral reperfusion may partially mediate this association. Further research is needed to assess the potential deleterious role of cerebral hyper-oxygenation during surgery.
-
Free Radic. Biol. Med. · Dec 2016
Styrene enhances the noise induced oxidative stress in the cochlea and affects differently mechanosensory and supporting cells.
Experimental and human investigations have raised the level of concern about the potential ototoxicity of organic solvents and their interaction with noise. The main objective of this study was to characterize the effects of the combined noise and styrene exposure on hearing focusing on the mechanism of damage on the sensorineural cells and supporting cells of the organ of Corti and neurons of the ganglion of Corti. The impact of single and combined exposures on hearing was evaluated by auditory functional testing and histological analyses of cochlear specimens. ⋯ The antioxidant treatment reduced the lipid peroxidation increase, potentiated the endogenous antioxidant defense system at OHC level in both exposures but it failed to ameliorate the oxidative imbalance and cell death of Deiters' cells in the styrene and combined exposures. Current antioxidant therapeutic approaches to preventing sensory loss focus on hair cells alone. It remains to be seen whether targeting supporting cells, in addition to hair cells, might be an effective approach to protecting exposed subjects.
-
Mitochondrial quality control is central for maintaining a healthy population of mitochondria. Two Parkinson's disease genes, mitochondrial kinase PINK1 and ubiquitin ligase Parkin, degrade damaged mitochondria though mitophagy. In this pathway, PINK1 senses mitochondrial damage and activates Parkin by phosphorylating Parkin and ubiquitin. ⋯ USP30 deubiquitinase acts as a brake on mitophagy by opposing Parkin-mediated ubiquitination. Human genetic data point to a role for mitophagy defects in neurodegenerative diseases. This review highlights the molecular mechanisms of the mitophagy pathway and the recent advances in the understanding of mitophagy in vivo.